
Model Checking (I)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 1

Motivation for verification

Computation Tree Logic — syntax and semantics

Example: mutual exclusion

A model checking algorithm



Verification Methods

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 2

Verification methods may be classified according to the following
main criteria:

� Proof-based vs. model-based - if a soundness and complete-
ness theorem holds, than:

– proof = valid formula = true in all models;
– model-based = check satisfiability in one model

� Degree of automation - fully automated, partially automated,
or manual

� Full- vs. property-verification - a single property vs. full
behavior

� Domain of application - hardware or software; sequential or
concurrent; reactive or terminating; etc.

� Pre- vs. post-development



Model Checking

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 3

Model Checking is a verification method that is:

� model-based, automated, using a property-verification
approach, mainly useful to verifying concurrent pro-
grams and reactive systems, typically in a post-
development stage.

Program Verification (to be studied later), is:

� proof based, computer-assisted (partially-automated),
mainly used for sequential, terminating programs



Kripke Structures

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 4

� Classical propositional and predicate calculi use a
unique universe for interpreting formulas.

� In the 1950s Kripke introduced a type of semantic mod-
els where more (local) universes are possible

� There is a relation of accessibility between these uni-
verses and operators to express relationships between
such universes, leading to various kinds of modalities.

� When such operators are added, one gets modal log-
ics. When time is the parameter that causes the passing
from one universe to another, one speaks about tempo-
ral logics.



Kripke Structures for Programs

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 5

Programs (software) fit well in this framework:

� a universe corresponds to a state;

� the accessibility relation is given by the transition from
one state to another;

� classic predicate logic may be used to specify relation-
ships between variables in a state.

At this point we are lacking a mechanism to relate these uni-
verses (states). A variety of such mechanisms shall be intro-
duced throughout this course.



Views of Time

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 6

We have the following characterizations of time:

� linear — a chain of time instances, or

� branching — several alternative future worlds may be possible at
a given point in time ;

or

� discrete — the time is represented by the set of integers, or

� continuous — time is represented by the set of real numbers.

Next, we shall study Computation Tree Logic (CTL) which is a type of
temporal logic using branching and discrete time.



Model Checking

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 7

For any model checking problem (based on CTL, or other
logic), we are required to answer the question of whether

M � s
� �

Φ ?

where

� M is an appropriate model for the given system, and s
is a state of the model;

� Φ is a CTL formula intended to be satisfied by the sys-
tem.



The Syntax of CTL

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 8

BNF definition of CTL:

φ ::
� � �

p
�����

φ � ���
φ � φ � ���

φ � φ � ���
φ � φ ��

AX φ
�

EX φ
�

A 	 φUφ 
 �
E 	 φ U φ 
 �

AG φ
�

EG φ
�

AF φ
�

EF φ

The new connectives AX, EX, AU, EU, AG, EG, AF, and EF

are called temporal connectives.



Depth and Breadth Quantification

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 9

The temporal connectives use two letters:

� A and E to quantify over the breadth in a branching point:

– All alternatives in a branching point;

– there Exists at least one alternative in a branching point

�
G and F to quantify along the paths:

– all future states on a path, Globally;

– there exists at least one Future state along the path

Two more operators expressing properties along the paths are used:

�
X to refer to the neXt state in the path (this leads to the discrete
feature of the time), and

�
U — the Until operator.



Priorities

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 10

Convention:

� the unary connectives (including AX, EX, AG, EG, AF,
and EF) bind most tightly;

� next come � and � ;

� lowest priority � , AU and EU.



Examples

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 11

1 EG r 2 AG
�
q � EG r �

3 A 	 r U q 
 4 EF E 	 r U q 

5 A 	 p U EF r 
 6 EF EGp � AF r

7 AG AF r 8 A 	 p1 U A 	 p2 U p3 
 

9 E 	 A 	 p1 U p2 
 U p3 
 10 AG

�
p � A 	 p U

� �
p � A 	 � p U q 
 � 
 �



Examples (2)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 12

The parse tree of the formula

A
�
AX � p U E

�
EX � p � q � U � p ���

p

p q

p

AU

AX EU

� EX �

�



CTL Semantics

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 13

A model M � � S � � � L � for CTL consists of

� a set of states S

� a binary relation � on S such that for every s � S there exists s
� � S

with s � s
�

� a labeling function L : S � P � Atoms �

The intuition is that L says which atoms are true in a state and � de-
scribes how the systems move from state to state.

Graphical description:
S � �

s0 � s1 � s2 �� � � � s0 � s1 ��� � s0 � s2 ��� � s1 � s0 ��� � s1 � s2 ��� � s2 � s2 � �
L � s0 ��� �

p � q � � L � s1 �	� �
q � r � � L � s2 ��� �

r �
1

2

0

s

s

q,r
s

r

p,q



The Satisfaction Relation

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 14

Let M � � S � � � L � be a model for CTL, s � S, and φ a CTL formula. The
satisfaction relation

M � s � � φ

is inductively defined by

1. M � s � � � and M � s �� � � for all s � S;

2. M � s � � p iff p � L � s � ;
3. M � s � � � φ iff M � s �� � φ;

4. M � s � � φ � ψ iff M � s � � φ and M � s � � ψ;

5. M � s � � φ � ψ iff M � s � � φ or M � s � � ψ;

6. M � s � � φ � ψ iff M � s �� � φ or M � s � � ψ;

7. M � s � � AX φ iff for all s
�
such that s � s

�
we have M � s � � � φ;

8. M � s � � EX φ iff for some s
�
such that s � s

�
we have M � s � � � φ;



The Satisfaction Relation (2)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 15

9. M � s � � AG φ iff for all paths s � s1
� s2

� ����� we have M � si � � φ,
for all i;

10. M � s � � EG φ iff there exists a path s � s1
� s2

� ����� such that
M � si � � φ, for all i;

11. M � s � � AF φ iff for all paths s � s1
� s2

� ����� we have M � si � � φ,
for some i;

12. M � s � � EF φ iff there exists a path s � s1
� s2

� ����� such that
M � si � � φ, for some i;

13. M � s � � A
�
φ U ψ � iff for all paths s � s1

� s2
� ����� there exists an i

such that M � si � � ψ and M � s j � � φ for all j � i;

14. M � s � � E
�
φ U ψ � iff there exists a path s � s1

� s2
� ����� and an i

such that M � si � � ψ and M � s j � � φ for all j � i;



Comments

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 16

� Notice that ‘the future’ is the reflexive-transitive clo-
sure � �

of the (direct) accessibility relation � .

� In common words:

– the future contains the present and

– a future of a future of t is a future of t.

� By unfolding [unwinding] the graph of a CTL model
one gets and infinite tree, whence ‘computation tree
logic’.



Unfolding

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 17

s
s

s

s

s s

s
s

s

2

q,r

p,q

q,r

0

1

1

p,q
0

r

r

r r

r
2

2

2

2

1

2

0

s

s

q,r
s

r

p,q

A CTL graph and its unfolding.



The Meaning of EF, EG, AG, and AF

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 18

Φ

Φ

Φ

Φ

Φ

Φ Φ

Φ Φ Φ Φ

Φ Φ

Φ

Φ Φ Φ

Φ

Φ

EF Φ EG Φ

AG Φ AF Φ



Until

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 19

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

p p p p p p q

...

Until p U q in a linear time model [or on a path in CTL].

The formula p U q holds in s3, but not in s0 (we suppose p
holds only in the indicated states)



Examples

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 20

s
s

s

s

s s

s
s

s

2

q,r

p,q

q,r

0

1

1

p,q
0

r

r

r r

r
2

2

2

2

M � s0
� �

p � q - Yes
M � s0

� � �
r - Yes

M � s0
� �

- Yes
M � s0

� �
EX

�
q � r � - Yes

M � s0
� � �

AX
�
q � r � - Yes

M � s0
� � �

EF
�
p � r � - Yes

M � s0
� �

EG r - No
M � s2

� �
EG r - Yes

M � s2
� �

AG r - Yes
M � s0

� �
AF r - Yes

M � s0
� �

E 	 � p � q � U r 
 - Yes
M � s0

� �
A 	 p U r 
 - Yes



Practical Patterns of Specifications

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 21

Examples of practically relevant properties that may be checked:

� it is possible to reach a state where started holds, but ready not:

EF � started � � ready �
� for any state, if a request occurs, then it will eventually be acknowledged:

AG � request � AF acknowledged �
� a certain process is enabled infinitely often on every computation path:

AG � AF enabled �
� whatever happens, a certain process will eventually be permanently

deadlocked:
AF � AG deadlocked �



Practical Patterns of Specifications (2)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 22

� from any state it is possible to get to a restart state:

AG � EF restart �

� an upwards traveling elevator at the 2nd floor does not change its
direction when has passengers going to the 5th floor:

AG � f loor � 2 � direction � up � ButtonPressed5�
A

�
direction � up U f loor � 5 � �

� the elevator can remain idle on the trird floor with its doors closed

AG � f loor � 3 � idle � door � closed�
EG � f loor � 3 � idle � door � closed � �



Useful Equivalences

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 23

Definition: Two CTL formulas φ and ψ are semantically
equivalent, denoted φ � ψ if any state in any model that
satisfies one of them also satisfies the other.

Useful equivalences:

1
�

AF φ �
EG

�
φ 2

�
EF φ �

AG
�

φ
3

�
AX φ �

EX
�

φ
4 AF φ �

A 	 U φ 
 5 EF φ �
E 	 U φ 




Adequate Sets of Temporal Connectives

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 24

Corollary (adequate sets of temporal connectives): The fol-
lowing sets of connectives are adequate for CTL (in the sense
that each CTL formula may be transformed into an equiva-
lent one using only those connectives):

� AU,EU and EX;

� EG,EU and EX; (hint for proof: A 	 φ U ψ 
 �� �
E 	 � ψ U

���
φ � �

ψ � 
 � EG
�

ψ � )
� AG,AU and AX;

� AF, EU and AX



Fixed Point Definitions

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 25

More useful equivalences (fixed-point definitions)

6 AG φ � φ � AX AG φ
7 EG φ � φ � EX EG φ
8 AF φ � φ � AX AF φ
9 EF φ � φ � EX EF φ

10 A 	 φ U ψ 
 � ψ � �
φ � AX A 	 φ U ψ 
 �

11 E 	 φ U ψ 
 � ψ � �
φ � EX E 	 φ U ψ 
 �

A mechnism for solving such fixed-point equations Y
�

φ � AX Y and the next operators AX and EX are sufficient
to represent all temporal logic operators.



Mutual Exclusion (1)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 26

Goal: to develop protocols for accessing some critical sec-
tions such that only one process can be in its critical section
at a time. A collection of desirable properties is:

Safety: the protocol allows only one process to be in its crit-
ical section at any time

Liveness: whenever any process wants to enter its critical
section, it will eventually be permitted to do so

Non-blocking: a process can always request to enter its crit-
ical section

No strict sequencing: Processes need not enter their criti-
cal section in strict sequence



Mutual Exclusion (2)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 27

A simple model MUT1:

n1,n2

t1,n2

c1,n2 t1,t2

n1,t2

n1,c2

t1,c2c1,t2

s0

s1

s2

s4

s3

s5

s6

s7

The system consists of two processes P1 and P2, each making a
loop n � t � c � ����� (noncritical � trying � critical � ����� ).
The system’s behaviour is the product (interleaving) of the be-
haviours of P1 and P2, but the state

�
c1 � c2 � is excluded.



Mutual Exclusion (3)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 28

Safety: φ1
�

de f AG
� �

c1 � c2 � — satisfied in each state;

Liveness: φ2
�

de f AG
�
t1 � AF c1 � — not satisfied in the initial

state s0; e.g., s1 is accessible, t1 is true, but there is a path
s1 � s3 � s7 � s1 � ����� where c1 is always false;

Non-blocking: φ3
�

de f AG
�
n1 � EX t1 � — true

No strict sequencing:
φ4

�
de f EF

�
c1 � E 	 c1 U

� �
c1 � E 	 � c2 U c1 
 � 
 � — true

n1,n2

t1,n2

c1,n2 t1,t2

n1,t2

n1,c2

t1,c2c1,t2

s0

s1

s2

s4

s3

s5

s6

s7



Mutual Exclusion (4)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 29

A second model MUT2:

s0

s1

s2 s3

s4

s5

s6

s7

s8

n1,n2

t1,n2

c1,n2

c1,t2

n1,c2

n1,t2

t1,c2

t1,t2t1,t2



Mutual Exclusion (5)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 30

� This model is obtained by splitting state s3 of MUT1 in two
different states s3 and s8.

� By spliting s3 into two states we are able to identify which
process was the first asking to access its critical section: if P1
was the first, the the resulting state is s3, otherwise s8.

Fact: All four properties (i.e., formuls φ1 to φ4) are valid in MUT2.



Model Checking Algorithms

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 31

Recall that the problem to be solved by model checking is

(A) “Given a model M , a CTL formula φ, and a state s, does
M � s � � φ hold?”, where

– M is a model of the system and s is a state of the model;

– φ is a CTL formula intended to be satisfied by the system

What is the model used for the system? Typically:

“A system is represented by a finite transition system (usually, a huge
labeled directed graph, often with milions of states).”

The infinite trees obtained by unfolding such graphs are useful to develop an
intuition of the reasoning process, but not to be used on our finite computers.



A Model Checking Result

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 32

Given M � s, and φ, the result returned by a model checker is either

(1) yes: M � s � � φ or

(2) no: M � s �� � φ

but, quite useful, in the latter case most of model checkers return a
trace/path which invalidates φ, as well (a counterexample).

Alternative problem:

(B) Given a model M and a CTL formula φ find all states s of the
model which satisfy φ

These two problems are obviously equivalent: once one is able to de-
velop algorithms to solve one of them, the other is solved, as well. We
will be mainly concerned with the latter problem B.



Reduced Set of CTL Connectives

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 33

We are starting with a version using the following reduced set of CTL
connectives

Γ � � � � � � � � AF � EU � EX �
where:

� � � � , and � are used for the propositional part

�
AF � EU, and EX are used for the temporal part

Hence, there is a preprocessing procedure to:

1. check the CTL syntax correctness of the given formula φ and

2. translate it in a formula TRANSLATE � φ � written with connectives
in Γ, only.

In the sequel, we suppose φ to be in CTL Γ-format.



The Labeling Algorithm

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 34

The idea of this algorithm is to:

� decompose formula φ in pieces (sub-formulas) and ap-
ply a structural induction to label the graph with sub-
formulas of φ (the intuition is that a formula that labels
a state is true in that state)

� for each such sub-formula, parse the graph to infer the
truth in a state according to the meaning of the connec-
tives and the truth values of its sub-formulas

In 2, one may need to know the values of sub-formulas in
possibly many different states; this is the case for temporal
operators, but not for the propositional ones.



The Labeling Algorithm (2)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 35

Input: a CTL model M
� �

S � � � L � and a CTL formula φ
(in Γ-format)

Output: the set of states of M which satisfy φ

1. : no states are labeled with

2. p: label with p all states s such that p � L
�
s �

3.
�

φ1: label s with
�

φ1 if s is not already labeled with φ1

4. φ1 � φ2: label s with φ1 � φ2 if s is already labeled both with φ1

and φ2

5. EX φ1: label s with EX φ1 if one of its successors is already
labeled with φ1



The Labeling Algorithm (3)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 36

6. AF φ1:

a. (initial marking) label any s with AF φ1 if s is already labeled
with φ1

b. (repeated marking) label any s with AF φ1 if all successor
states of s are already labeled with AF φ1

c. repeat (2) until there are no change

7. E 	 φ1 U φ2 
 :
a. (initial marking) label any s with E 	 φ1 U φ2 
 if s is already

labeled with φ2
b. (repeated marking) label any s with E 	 φ1 U φ2 
 if s is already

labeled with φ1 and at least one of its successor states is
already labeled with E 	 φ1 U φ2 


c. repeat (2) until there is no change



Complexity

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 37

A rough analysis of the algorithm shows that it has the worse
time complexity

O
�
k � m �

�
m

�
n � �

where k is the number of connectives of the formula, m is
the number of the states of the model, and n is the number
of the transitions of the model.



Mutual Exclusion, Revisited

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 38

Checking E 	 � c2 U c1 
 in the second mutual exclusion model MUT2:

s5

s0

0: t1,n2

0: c1,n2 0: t1,t2

0: c1,t2

2: E[~c2 U c1]

s3

s1

s2 s6s9

s4 s7

1: E[~c2 U c1]

1: E[~c2 U c1]

2: E[~c2 U c1]

3: E[~c2 U c1]
0: n1,n2

0: n1,t2

0: t1,t2

0: t1,c2

0: n1c2



EG Directly

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 39

EG may be handled directly as follows:

6’ EG φ1:

0. label all states s with EG φ1

1. (initial de-marking) if φ1 does not hold in s then delete the
label EG φ1

2. (repeated de-marking) delete the label EG φ1 from any state
s if none of its successor states is labeled with EG φ1

3. repeat (2) until there are no change

This different approach is based on the following greatest fixed-point
characterization of EG

EG φ � φ � EX EG φ



An Improved Variant

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 40

� Use EX � EU, and EG instead of EX � EU, and AF

� handle EX and EU as before (using backwards breadth-first search)

� for EG φ

– restrict to states satisfying φ
– find SCCs (maximal strongly connected components; these

are maximal regions such that any vertex is connected to any
other vertex in the region)

– use backwards breadth-first searching on the restricted graph
to find any state that can reach an SCC

Complexity is reduced to O � k � � m �
n � � (k � m � n as before).



Pseudo-Code

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 41

function SAT
�
φ � :

/* precondition: φ is an arbitrary CTL formula */
/* postcondition: SAT

�
φ � returns the set of states satisfying φ */

begin function
case

φ is : return S
φ is : return /0
φ is atomic formula: return

�
s � S

�
φ � L

�
s ���

φ is
�

φ1: return S � SAT
�
φ1 �

φ is φ1 � φ2: return SAT
�
φ1 � � SAT

�
φ2 �

φ is φ1 � φ2: return SAT
�
φ1 � � SAT

�
φ2 �

φ is φ1 � φ2: return SAT
���

φ1 � φ2 �



Pseudo-Code (2)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 42

(...cont.)
φ is AXφ1: return SAT

� �
EX

�
φ1 �

φ is EXφ1: return SATEX
�
φ1 �

φ is A 	 φ1Uφ2 
 :
return SAT

� � �
E 	 � φ1U

� �
φ1 � �

φ2 � 
 � EG
�

φ2 � �
φ is E 	 φ1Uφ2 
 : return SATEU

�
φ1 � φ2 �

φ is EFφ1: return SAT
�
E 	 U φ1 
 �

φ is EGφ1: return SAT
���

AF
�

φ1 
 �
φ is AFφ1: return SATAF

�
φ1 �

φ is AGφ1: return SAT
� �

EF
�

φ1 �
end case

end function



Pseudo-Code (3)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 43

function SATEX
�
φ � :

/* pre: φ is an arbitrary CTL formula */
/* post: SATEX

�
φ � returns the set of states satisfying EX φ */

local var X � Y
begin

X :
�

SAT
�
φ � ;

Y :
� �

s0
� S

�
s0 � s1 for some s1

� X � ;
return Y

end



Pseudo-Code (4)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 44

function SATAF
�
φ � :

/* pre: φ is an arbitrary CTL formula */
/* post: SATAF

�
φ � returns the set of states satisfying AF φ */

local var X � Y
begin

X :
�

S;
Y :

�
SAT

�
φ � ;

repeat until X
�

Y
begin

X :
�

Y ;
Y :

�
Y � �

s � S
�

for all s � with s � s � we have s � � Y � ;
end

return Y
end



Pseudo-Code (5)

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 45

function SATEU
�
φ � ψ � :

/* pre: φ is an arbitrary CTL formula */
/* post: SATEU

�
φ � ψ � returns the set of states satisfying E 	 φUψ 
 */

local var W � X � Y
begin

W :
�

SAT
�
φ � ;

X :
�

S;
Y :

�
SAT

�
ψ � ;

repeat until X
�

Y
begin

X :
�

Y ;
Y :

�
Y � �

W � �
s � S

�
exists s � such that s � s � and s � � Y � ;

end
return Y

end



The State Explosion Problem

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 46

� the labeling algorithm is quite efficient [linear in the
size of the model]

� ... but the model itself may be large, exponential in
the number of the components (running in parallel 10
threads each of them having 10 states results in a sys-
tems with 1010 �

10 � 000 � 000 � 000 states!)

� the tendency of the state space to become very large is
commonly referred to as the state explosion problem

� the state explosion problem is mainly unsolved - no
general solution is known at the moment



Dealing With the State Explosion Code

CS3234 — Logic and Formal Systems — Lecture 06 — 16/09/04Slide 47

The problem is general unsolved. The following techniques were devel-
oped to overcome it in certain particular cases:

1. efficient data structures - e.g., ordered binary decision diagrams
OBDDs (OBDDs are used to represents sets of states, not individ-
ual states)

2. abstraction - one may abstract away variables in the model that
are not relevant for the formula being checked

3. partial order reduction - different runnings may be equivalent as
far as the formula to be checked is concerned; partial order reduc-
tion check one trace from such a class only

4. induction - this technique is used when a large number of pro-
cesses is considered

5. composition - try to split the problem in small parts to be sepa-
rately checked


