
Model Checking (I)

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 1

SMV — the Symbolic Model Verifier

Example: the alternating bit protocol

LTL — Linear Time temporal Logic

CTL
�

Fixed Points

Correctness



SMV - Symbolic Model Verifier

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 2

SMV - Symbolic Model Verifier was one of the first model
checkers. It is based on CTL, was developed in early ’90,
and had a strong impact on the verification field.

� SMV (Symbolic Model Verifier) was developed at
CMU, see
www.cs.cmu.edu/

�

modelcheck/smv.html

� it provides a language for describing the mod-
els/diagrams and it checks the validity of CTL formulas
in such models

� the output is ‘true’ or a trace showing why the formula
is false



SMV - Syntax

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 3

SMV - Syntax (informal)

� SMV programs consist of one or more modules (one of
them should be main)

� each module can declare variables and assign values to
them

� assignment uses two qualifications: initial (to indi-
cate the initial state) and next (to indicate the next state
in the corresponding state transition diagram)

� the assignments may be nondeterministic - this is indi-
cated by using the set notation

���������
(choose one ele-

ment form this set)
(...cont.)



SMV - Syntax (2)

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 4

� one may use the case construct; in such a case the con-
ditions in front of ‘:’ are parsed from top to bottom
and the first which is found true is executed; a default
variant (with a always true condition, indicated by 1) is
usually placed at the bottom of the case construct

� a module may have proper specifications to be checked,
written in CTL syntax (but &,|,->,! are used instead
of � ��� ��� ��� )



SMV, 1st example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 5

Our first program is rather typical:

� it models a part of the system which pass from ready
to busy either due to some hidden reasons (not seen in
the model) or due to a visible request request;

� the system pass from busy to ready in a nondetermin-
istic way, too (no visible reason)

� the intention of this simple abstract model is to check if
it satisfies the formula
AG(request -> AF status = busy)



...SMV, 1st example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 6

MODULE main
VAR

request : boolean;
status : � ready,busy � ;

ASSIGN
init(status) := ready;
next(status) :=

case
request : busy;
1 : � ready,busy � ;

esac;
SPEC

AG(request -> AF status = busy)

req
ready busy

req

~req
busyready

~req



SMV, 2nd example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 7

The 2nd program illustrates the use of modules:

� the program models a counter from 000 to 111

� a module counter cell is instantiated 3 times with
names bit0, bit1, and bit2

� counter cell has a formal parameter

� the period ‘.’ is used to access the variables of a partic-
ular instance (m.v indicates a reference to the variable
v of module m)

� we check the following easy formula
AG AF bit2.carry out



...SMV, 2nd example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 8

MODULE main
VAR

bit0 : counter cell(1);
bit1 : counter cell(bit0.carry out);
bit2 : counter cell(bit1.carry out);

SPEC
AG AF bit2.carry out

MODULE counter cell(carry in)
VAR

value : boolean;
ASSIGN

init(value) := 0;
next(value) := value + carry in mod 2;

DEFINE
carry out := value & carry in;



SMV, 2nd example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 9

Note: define statement is used to avoid increasing the state space; its
effect may be obtained with a variable, too:

VAR
carry out : boolean;

ASSIGN
carry out := value & carry in;



Synchronous and asynchronous composition

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 10

By default, SMV modules are composed synchronously:

at each clock tick, each module executes a transition

(mainly used for hardware verification)

It is also possible to model asynchronous composition

at each clock tick, SMV chooses a module in a random
way and executes a transition there

(mainly used for verifying communication protocols)



SMV, 3rd example — Mutual Exclusion

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 11

A CTL model for ‘mutual exclusion problem’ was presented before.
Here we give a SMV implementation. A few new features are:

� there is a module main with (1) a variable turn which determines
the process to enter in its critical section and (2) two instantiations
of the module prc

� because of the turn variable the state transition diagram (shown
later) is slightly more complicate

� one important new feature is the presence of the fairness state-
ment; it contains a CTL formula φ and restricts the search to those
paths where φ is true infinitely often (running is an SMV keyword
indicating that the corresponding module is selected for execution
infinitely often)



...SMV, 3rd example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 12

MODULE main
VAR

pr1 : process prc(pr2.st, turn, 0);
pr2 : process prc(pr1.st, turn, 1);
turn : boolean;

ASSIGN
init(turn) := 0;

--safety
SPEC AG!((pr1.st = c) & (pr2.st = c))
--liveness
SPEC AG((pr1.st = t) -> AF (pr1.st = c))
SPEC AG((pr2.st = t) -> AF (pr2.st = c))
--no strict sequencing
SPEC EF(pr1.st = c & E[pr1.st = c U

(!pr1.st = c & E[! pr2.st = c U pr1.st = c
])])



...SMV, 3rd example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 13

MODULE prc(other-st, turn, myturn)
VAR

st : � n, t, c � ;
ASSIGN

init(st) := n;
next(st) :=

case
(st = n) : � t, n � ;
(st = t) & (other-st = n) : c;
(st = t) & (other-st = t) & (turn = myturn) : c;
(st = c) : � c, n � ;
1 : st;

esac;
next(turn) :=

case
turn = myturn & st = c : !turn;
1 : turn;

esac;
FAIRNESS running
FAIRNESS !(st = c)



...SMV, 3rd example

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 14

Mutual exclusion in SMV:

1 2

2

2

2 1

1

2

1

1

1,2

1,2

1,2

12

1,2

2

1
2

1

1

12

1,2

ct0

nn0

tt0

tc0 tn0

2

tt1

nc1

tc1

2

nc0nt0

1,2
2 1

1,21,2

1

2
1

nt1

2

1
2

1

1

1

2

1

2

2

nn1

tn1cn1ct1

cn0



ABP: Alternating Bit Protocol

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 15

� The Alternating Bit Protocol ABP is a protocol for correctly trans-
mitting data on faulty channels which may lose or duplicate data;

� ABP uses two faulty channels between a sender and a receiver:
one to send data from the sender to the receiver and the other to
send an acknowledgment from the receiver to the sender;

� in case of a unsuccessful transmission the attempt is repeated;

� to achieve it goal, APB keeps track on this repeated sendings using
a control bit which is switched when the sending pass from one
datum to another: the sender appends its control bit to the datum
to be send and keeps sending till it receives this control bit back
via the acknowledgement channel



...APB

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 16

The figure below describes the structure of the ABP.

S: sender

msgChan: twoBitChan

ackChan: oneBitChan R: receiver

message

sbit

output1

output2

ackoutput

st

message

sbit

st

ack

rbit

output1
output2

output



...APB

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 17

00 MODULE sender(ack)
01 VAR
02 st : � sending, sent � ;
03 message : boolean;
04 sbit : boolean;
05 ASSIGN
06 init(st) := sending;
07 next(st) :=
08 case
09 ack = sbit & !(st = sent) : sent;
10 1 : sending;
11 esac;
12 next(message) :=
13 case
14 st = sent : � 0, 1 � ;
15 1 : message;
16 esac;
17 next(sbit) :=
18 case
19 st = sent : !sbit;
20 1 : sbit;
21 esac;
22 FAIRNESS running
23 SPEC AG AF st = sent



...APB

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 18

24 MODULE receiver(message, sbit)
25 VAR
26 st : � receiving, received � ;
27 ack : boolean;
28 rbit : boolean;
29 ASSIGN
30 init(st) := receiving;
31 next(st) :=
32 case
33 sbit = rbit & !(st = received) : received;
34 1 : receiving;
35 esac;
36 next(ack) :=
37 case
38 st = received : sbit;
39 1 : ack;
40 esac;
41 next(rbit) :=
42 case
43 st = received : !rbit;
44 1 : rbit;
45 esac;
46 FAIRNESS running
47 SPEC AG AF st = received



...APB

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 19

48 MODULE oneBitChan(input)
49 VAR
50 output : boolean;
51 ASSIGN
52 next(output) := � input, output � ;
53 FAIRNESS running
54 FAIRNESS (input = 0 -> AF output = 0) & (input = 1
55 -> AF output = 1)
56
57 MODULE twoBitChan(input1, input2)
58 VAR
59 output1 : boolean;
60 output2 : boolean;
61 ASSIGN
62 next(output2) := � input2, output2 � ;
63 next(output1) :=
64 case
65 input2 = next(output2) : input1;
66 1 : � input1, output1 � ;
67 esac;
68 FAIRNESS running
69 FAIRNESS (input1 = 0 -> AF output1 = 0) & (input1 = 1
70 -> AF output1 = 1) & (input2 = 0 -> AF output2 = 0)
71 & (input2 = 1 -> AF output2 = 1)



...ABP

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 20

72 MODULE main
73 VAR
74 S : process sender(ackChan.output);
75 R : process receiver(msgChan.output1,
msgChan.output2);
76 msgChan : process twoBitChan(S.message, S.sbit);
77 ackChan : process oneBitChan(R.ack);
78 ASSIGN
79 init(S.sbit) := 0;
80 init(R.rbit) := 0;
81 init(R.ack) := 1;
82 init(msgChan.output2) := 1;
83 init(ackChan.output) := 1;
84 SPEC AG(S.st = sent & S.message = 1 ->
msgChan.output1 = 1)



Logics for Reactive Systems

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 21

The are many specification languages for reactive systems,
e.g.:

� regular expressions

� state-chats

� graphical interval logics

� modal mu-calculus

� linear time temporal logic

� CTL

� CTL
�

� . . .



LTL (linear time temporal logic)

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 22

LTL (linear time temporal logic) is closely related to CTL.
Its syntax is the following:

φ :: � �
p
���

� φ � ��� φ � φ � ��� φ U φ � ��� G φ � ��� F φ � ��� X φ �
Examples:

GF p
FG p
G
�
p � X p �

G p � F q



LTL vs. CTL

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 23

Comments:
� a LTL formula is evaluated on a path or set of paths;

for this reason the CTL qualifications E (there exists a
branch) and A (all branches) are dropped (in this respect
LTL looks to be less expressive than CTL)

� however, LTL allows nesting modal operators in a way
not allowed in CTL, e.g., GFφ (in this respect LTL looks
to be more expressive than CTL)

Apparently LTL is more permissive as it allows for boolean combinations

of paths, but this may be done in CTP, too.



LTL semantics

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 24

Let M � �
S ��� � L � be a (CTL-like) model and π � s1 �

��� �
a

path; πi denotes the path si � si � 1 �
��� �

The satisfaction relation π
� � φ is inductively defined as follows:

1. π
� �

2. π
� � p iff p � L

�
s1 �

3. π
� � � φ iff π

� � φ
4. π

� � φ1 � φ2 iff π
� � φ1 and π

� � φ2

5. π
� � X φ1 iff π2 � � φ1

6. π
� � G φ1 iff for all i 1, πi � � φ1

7. π
� � F φ1 iff for some i 1, πi � � φ1

8. π
� � φ1 U φ2 iff there is some i 1 such that πi � � φ2 and

for all j � 1 �
��� �

� i � 1 we have πi � � φ1



Semantic equivalence

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 25

� Two LTL formulas φ and ψ are semantically equivalent,
written φ � ψ, if for any model they are true for the
same paths.

� An LTL formula φ is satisfied in a state s of a model M
if φ holds for all paths starting at s.

Examples

G φ � � F � φ
F
�
φ � ψ � � F φ � F ψ

G
�
φ � ψ � � G φ � G ψ

Note: From the CTL point of view, a LTL formula φ is iden-
tified with A

�
φ � (all paths are considered when formula sat-

isfiability is to be checked)



Until Identity

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 26

For all LTL formulas φ and ψ

�
�
φ U ψ � � � ψ U

�
� φ � � ψ � � G � ψ

Proof:
�
�
φ U ψ � is true

iff
(1) either ψ is always false or
(2) φ is false before ψ becomes true

iff
(1) either G � ψ is true or
(2) � ψ U

�
� φ � � ψ �

iff
� ψ U

�
� φ � � ψ � � G � ψ is true

An equivalent form is: φ U ψ � � � � ψ U
� � φ � � ψ ����� F ψ



CTL �

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 27

The syntax of CTL
�

define state formulas and path formulas
using the following mutually recursive definitions:

� state formulas (to be evaluated in states)

φ :: � �
p
���

� φ � � � φ � φ � � A
�
α � � E

�
α �

� paths formulas (to be evaluated along paths)

α :: � φ
� �

� α � � � α � α � � � X α � � � G α � � � F α � � � α U α �



CTL � - examples

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 28

Examples:

� A
� �

p U r � � �
q U r � � : along all paths, either p is true until

r, or q is true until r (not equivalent to A
� �

p � q � U r � )
� A

�
X p � XX p � : p is true in the next state, or in the next

next state (not equivalent to AX p � AX AX p)

� E
�
GF p � : there is a path along which p is infinitely many

true (not equivalent to EG EF p)



CTL � semantics

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 29

Let M � �
S ��� � L � be a model.

� If φ is a state formula, the notation M � s
� � φ means that

φ holds in state s.

� If α a path formula, then M � π
� � α means that α holds

along path π.

These relations are inductively defined as follows:



...CTL � semantics

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 30

1. M � s
� � p iff p � L

�
s �

2. M � s
� � � φ iff M � s

� � φ
3. M � s

� � φ1 � φ2 iff M � s
� � φ1 and M � s

� � φ2

4. M � s
� � A

�
α � iff for any path π starting from s, M � π

� � α
5. M � s

� � E
�
α � iff there is a path π starting from s such that

M � π
� � α

6. M � π
� � φ iff s is the first state of π and M � s

� � φ
7. M � π

� � α1 � α2 iff M � π
� � α1 and M � π

� � α2

8. M � π
� � Xα iff M � π1 � � α

9. M � π
� � Gα iff for all k 0, M � πk � � α

10. M � π
� � Fα iff there exists a k 0 such that M � πk � � α

11. M � π
� � α1 U α2 iff there exists a k 0 such that M � πk � � α2

and for all 0 j � k, M � π j � � α1



LTL and CTL as subsets of CTL �

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 31

� CTL is the particular case of CTL
�

where the paths formu-
las are restricted to

α :: � �
X φ � ��� G φ � ��� F φ � ��� φ U φ �

where φ is a state formula. (In other words, each temporal
operator is directly preceded by a path quantification A or
E leading to the known CTL operators consisting of ‘two
letters’: AG, etc.)

� an LTL formula α is identified with CTL
�

formula

A
�
α �

(semantically all paths are considered when LTL formula
satisfiability is checked)



CTL, LTL, and CTL �

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 32

� LTL and CTL are incomparable with respect to their expressive
power

� a useful common extension CTL
�

was developed and exten-
sively studied

LTL

phi1 phi2 phi3 phi4
CTL

CTL*
Example:
φ1 � AG

�
EF p �

φ3 � A
�
FG p �

φ4 � φ1 � φ3

Or:
φ3 � A

�
GF p � F q �

φ4 � E
�
GF p �



...CTL, LTL, and CTL �

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 33

The CTL formula
��� � � � AG EF p

describes

“wherever we have got to, we can always get back
to a state in which p is true”

This property can not be expressed in LTL. If there is an LTL
formula φ such that A

�
φ � � AG EF p, then with respect to the

diagram

s t

p~p ~p

s

M’M

M � s
� � AG EF p is valid, hence also M � s

� � A
�
φ � . On the

other hand, the paths in M � of the diagram is a subset of the
paths in M , hence M � � s

� � A
�
φ � , but this is not true.



...CTL, LTL, and CTL �

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 34

The LTL formula
��� ��� � A

�
GF p � F q �

describes

“if there are infinitely many p along the path,
then there is an occurrence of q”

This property can not be expressed in CTL.

The CTL
�

formula
��� ��� � E

�
GF p �

describes

“there is a path with infinitely many p”

This property can be expressed neither in CTL nor in LTL.



Miscellaneous

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 35

� Boolean combinations of paths in CTL:

– E
�
Fp � Fq � � EF

�
p � EFq � � EF

�
q � EFp �

– E
� �

p1Uq1 � �
�
p2Uq2 � � � E

� �
p1 � p2 � U

�
q1 �

E
�
p2Uq2 � � � � E

� �
p1 � p2 � U

�
q2 � E

�
p1Uq1 � � �

– E
�
�
�
pUq � � � E

�
� qU

�
� p � � q � � � EG � q

� The weak until operator W is defined in LTL or CTL
�

by

– pWq � �
pUq � � Gp

This does not work in CTL, but the following identities
do the job

– E
�
pWq � � E

�
pUq � � EGp

– A
�
pWq � � � E

�
� qU �

�
p � q � �



Fixed points

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 36

� Let S be a set of states and F : P
�
S � � P

�
S � a function.

� F is called monotone if X Y implies F
�
X � F

�
Y � .

� An X � P
�
S � is called fixed point if F

�
X � � X .

� Denote Fk � X � � F
�
F
� ��� �

F
�
X � ��� � � � , where F is ap-

plied k times.

� F is called continuous if F
�

Xi � � F
�
Xi � for any in-

creasing sequence X0 X1 X2
�����

.



Kleene thorem

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 37

A well-known theorem of Kleene shows that in such a set-
ting

� a monotone and continuous F has both a least fixed
point, denoted µZ

�
F
�
Z � , and a greatest fixed point, de-

noted denoted νZ
�
F
�
Z � ;

� moreover, the following formulas may be used to com-
pute them:

µZ
�
F
�
Z � � /0 � F

�
/0 � � F

�
F
�
/0 � � �

� ���

and
νZ

�
F
�
Z � � S � F

�
S � � F

�
F
�
S � � �

�����

In the special case when S is finite, say with n elements, the
continuity condition is not necessary. Indeed,



Fixed points on finite sets

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 38

Theorem: If S has n elements and F is monotone, then

µZ
�
F
�
Z � � Fn � /0 � and νZ

�
F
�
Z � � Fn � S �

Proof:

(1) Clearly /0 F1 � /0 � ; applying F we get F1 � /0 F2 � /0 � ;
repeating, we get: /0 F1 � /0 � F2 � /0 � ��� �

Fn � 1 � /0 �
The above chain of inclusions can not be strict, hence
one of ‘ ’ should in fact be an equality (otherwise at
each step we add at least one element, hence Fn � 1 � /0 �
will have at least n � 1 elements, which is not possible);
it follows that for some 0 i0 n, F i0

�
/0 � � F

�
F i0

�
/0 � � ,

which entails that F i0
�
/0 � is a fixed point.



...Fixed points on finite sets

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 39

(2) To show that F i � /0 � is less than any other fixed point is
easy: Let X be a fixed point; then /0 X ; applying F we
get F

�
/0 � F

�
X � � X ; repeating, we get that Fk � /0 � X

for any k, hence F i0
�
/0 � X .

(3) The case of the greatest fixed point is similar, but one
has to start with S and the reverse the inclusions.



Correctness of SATEU

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 40

Denote by
� �
φ � � the set of states satisfying φ and by F the

mapping

Z ��
� �
ψ � � �

� � �
φ � � �

�
s : exists s � such that s � s � and s � � Z

�

Theorem: If F is as above and n � �
S
�
, then: (1) F is

monotone: (2)
� �
E

�
φ U ψ � � � is the least fixed point of F; and

(3)
� �
E

�
φ U ψ � � � � Fn � 1 � /0 �

Proof:

(1) The mapping H
�
Z � � �

s : exists s � such that s � s � and s � �
Z
�

is monotone (similar to a tutorial question). F is
obtained from H by intersection and union with certain
sets, hence is monotone, too.



...Correctness of SATEU

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 41

(2) Looking at the states Fk � /0 � we see that

— F 0 � /0 � contains the states in
� �
ψ � � ;

— F 1 � /0 � contains the states in
� �
ψ � � , or those in

� �
φ � �

which have transitions to states in
� �
ψ � � ;

— . . .

In general,

Fk � /0 � contains those states which have a path of
length less than k to a state in

� �
ψ � � going through

states in
� �
φ � � , only

hence the union of all Fk � /0 � gives
� �
E

�
φ U ψ � � � .

We know that the chain Fk � /0 � is increasing and
Fn � 1 � /0 � is a fixed point, hence the union of all F k � /0 � is
just Fn � 1 � /0 � .

(3) already shown at (2)



...Correctness of SATEU

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 42

The final observation is that SATEU uses an equivalent, but
somehow simpler iterative process: instead of

Fk � 1 � /0 �
� � �

ψ � � �
� � �

φ � � �
�
s : exists s � such that s � s � and s � �

Fk � /0 � �

it uses the iterative process

Fk � 1
1

�
/0 �

� Fk
1

�
/0 � �

� � �
φ � � �

�
s : exists s � such that s � s � and s � �

Fk
1

�
/0 � �



SATEG

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 43

function SATEG
�
φ � :

/* pre: φ is an arbitrary CTL formula */
/* post: SATEG

�
φ � returns the set of states satisfying EG φ */

local var X � Y
begin

X : � /0;
Y : � SAT

�
φ � ;

repeat until X � Y
begin

X : � Y ;
Y : � Y �

�
s � S : exists s � with s � s � and s � � Y

�
;

end
return Y

end



Correctness of SATEG

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04Slide 44

Denote by
� �
φ � � the set of states satisfying φ and by G the mapping

Z ��
� �
φ � � �

�
s : exists s � such that s � s � and s � � Z

�

Theorem: If F is as above and n � �
S
�
, then: (1) G is monotone: (2)� �

EG φ � � is the greatest fixed point of G; and (3)
� �
EG φ � � � Gn � 1 � S �

The proof is similar to the previous theorem.

Finally, instead of the iterative process

Gk � 1 � S � � � �
φ � � �

�
s : exists s � such that s � s � and s � � Gk � S � �

the SATEG algorithm uses the simpler equivalent iterative process

Gk � 1
1

�
S � � Gk � S � �

�
s : exists s � such that s � s � and s � � Gk � S � �


