Model Checking (1)

* SMV — the Symbolic Model Verifier
% Example: the alternating bit protocol
% LTL — Linear Time temporal Logic
* CTL*

% Fixed Points

Y Correctness

Slide 1 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV - Symbolic Model Verifier

SMV - Symbolic Model Verifier was one of the first model
checkers. It iIs based on CTL, was developed in early 90,
and had a strong impact on the verification field.

e SMV (Symbolic Model Verifier) was developed at
CMU, see

www.cs.cmu.edu/~modelcheck/smv.html

e It provides a language for describing the mod-
els/diagrams and it checks the validity of CTL formulas
In such models

e the output Is ‘true’ or a trace showing why the formula
IS false

Slide 2 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV - Syntax

SMV - Syntax (informal)

e SMV programs consist of one or more modules (one of
them should be nai n)

e each module can declare variables and assign values to
them

e assignment uses two qualifications: i nitial (to indi-
cate the initial state) and next (to indicate the next state
In the corresponding state transition diagram)

e the assignments may be nondeterministic - this is indi-
cated by using the set notation {...} (choose one ele-
ment form this set)

(...cont.)

Slide 3 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV - Syntax (2)

e One may use the case construct; in such a case the con-
ditions In front of “:” are parsed from top to bottom
and the first which is found true Is executed; a default
variant (with a always true condition, indicated by 1) Is
usually placed at the bottom of the case construct

e amodule may have proper specifications to be checked,
written in CTL syntax (but &,|,->,! are used Instead
of \,V,—,)

Slide 4 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV, 1st example

Our first program is rather typical:

e It models a part of the system which pass from r eady
to busy either due to some hidden reasons (not seen in
the model) or due to a visible request r equest ;

e the system pass from busy to r eady In a nondetermin-
Istic way, too (no visible reason)

e the Intention of this simple abstract model is to check if
It satisfies the formula

AG request -> AF status = busy)

Slide 5 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

..SMV, 1st example

MODULE mai n
VAR
request : bool ean;
status : {ready, busy};
ASSI GN
Init(status) := ready,
next (status) :=
case
request : busy;
1 : {ready, busy};
esac;

SPEC
AGrequest -> AF status

Slide 6

N\

~Ieg ~Teq
ready busy

= busy)

req req
ready busy

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV, 2nd example

The 2nd program illustrates the use of modules:
e the program models a counter from 000 to 111

e a module counter _cel |l 1Is Instantiated 3 times with
namesbit0, bitl andbit?2

e count er _cel | has a formal parameter

e the period “.” Is used to access the variables of a partic-
ular instance (m v indicates a reference to the variable
v of module m

e We check the following easy formula
AG AF bit2.carry_out

Slide 7 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

..SMV, 2nd example

MODULE mai n
VAR
bitO : counter_cell(1);
bitl : counter _cell(bit0O.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry_out

MODULE counter cel |l (carry_n)

VAR

val ue : bool ean;
ASSI GN

init(value) := 0;

next(value) := value + carry_in nod 2;
DEFI NE

carry_out := value & carry._n;

Slide 8 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV, 2nd example

Note: defi ne statement is used to avoid increasing the state space; its
effect may be obtained with a variable, too:

VAR
carry_out . bool ean;
ASSI GN
carry_out := value & carry._n;

Slide 9 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Synchronous and asynchronous composition

By default, SMV modules are composed synchronously:
at each clock tick, each module executes a transition

(mainly used for hardware verification)

It is also possible to model asynchronous composition

at each clock tick, SMV chooses a module in a random
way and executes a transition there

(mainly used for verifying communication protocols)

Slide 10 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SMV, 3rd example — Mutual Exclusion

A CTL mode for ‘mutual exclusion problem’ was presented before.
Here we give a SMV implementation. A few new features are:

e thereisamodule mai n with (1) avariablet ur n which determines
the process to enter initscritical section and (2) two instantiations
of the module prc

e because of the t ur n variable the state transition diagram (shown
later) is slightly more complicate

e oOne important new feature is the presence of the f ai r ness state-
ment; it contains a CTL formula @ and restricts the search to those
pathswhere @istrueinfi nitely often (r unni ng isan SMV keyword

Indicating that the corresponding module is selected for execution
Infi nitely often)

Slide 11 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...SMV, 3rd example

MODULE mai n
VAR
prl : process prc(pr2.st, turn, 0);
pr2 . process prc(prl.st, turn, 1);
turn : bool ean;
ASSI GN
init(turn) .= 0;
--safety
SPEC AG ((prl.st =c) & (pr2.st =c¢))
--l1veness
SPEC A (prl.st =t) -> AF (prl.st
SPEC A (pr2.st =t) -> AF (pr2.st
--no strict sequencing
SPEC EF(prl.st = c & E[prl.st =¢c U
('prl.st = c & E[! pr2.st =c Uprl.st =¢

c))
c))

1)

Slide 12 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

..SMV, 3rd example

MODULE prc(other-st, turn, nmyturn)

VAR
st : {n, t, c};

ASSI GN
Init(st) :
next(st) :

case
(st
(st
(st
(st
1: s
esac;
next(turn) :=
case
turn = nmyturn & st = c . lturn;
1 turn;
esac;
FAI RNESS r unni ng
FAIRNESS ! (st = c)

{t, nh
(ot her - st
(ot her - st

{c, n};

n) . c;
t) & (turn = myturn) : c;

Slide 13 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

..SMV, 3rd example

Mutual exclusionin SMV:

1,z 1,2

ol
"‘

Q 1

Slide 14 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

ABP: Alternating Bit Protocol

e The Alternating Bit Protocol ABP isa protocol for correctly trans-
mitting data on faulty channels which may lose or duplicate data;

e ABP uses two faulty channels between a sender and a receiver:
one to send data from the sender to the receiver and the other to
send an acknowledgment from the receiver to the sender;

e In case of aunsuccessful transmission the attempt is repeated,;

e toachieveit goal, APB keepstrack on thisrepeated sendings using
a control bit which is switched when the sending pass from one
datum to another: the sender appends its control bit to the datum
to be send and keeps sending till it receives this control bit back
via the acknowledgement channel

Slide 15 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...APB

The figure below describes the structure of the ABP.

msgChan: twoBitChan

message outputl
outputl
output?2
st sbit output2 st
message ack
shit rbit
output
output ack
S: sender ackChan: oneBitChan R: receiver

Slide 16 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...APB

00 MODULE sender (ack)
01 VAR |

02 st : {sending, sent};
03 nmessage : bool ean:

04 shit . bool ean;

05 ASSI GN _

06 1nit(st) := sending;

07 next (st =

08 case _

09 ack = shit & !(st = sent) . sent;
10 1 : sending;

11 esac;

12 next(nessage) : =

13 case

14 st = sent : {0, 1};
15 1 . nessage;

16 esac;

17 next(sbit) :=

18 case _

19 st = sent . !shit;
20 1: shit;

21 esac;

22 FAI RNESS runni ng
23 SPEC AG AF st = sent

Slide 17 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...APB

Slide 18

24 MODULE recei ver(nessage, sbhit)

25
26
217
28
29

42
43
44
45

VAR

st : {receiving, received},
ack : bool ean;
rbit : bool ean;
ASSI GN o
init(st) := receiving;
next(st) :=
Case
shit =rbit & !(st = received) : received,
1 : recelving;
esac;
next (ack) :=
case _ _
st = received : shit;
1 : ack;
esac;
next(rbit) :=
case _ _
st = received : !rbhit;
1: rhbit;
esac;

46 FAI RNESS r unni ng

47

SPEC AG AF st

= recel ved

CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...APB

48 MODULE oneBi t Chan(i nput)
49 VAR
50 output : bool ean;
E%ASSH}?I t put) {i nput t put }
next (out put) := {input, output};
53 FAI RNESS r&hning P P |
54 FAIRNESS (input = 0 -> AF output = 0) & (input =1
55 -> AF output = 1)

57 MODULE twoBI t Chan(inputl, iInput?2)
58 VAR

59 outputl : Dboolean;

60 output2 . bool ean;

g% ASSIGP t put 2 {i nput 2, output2}
next (out pu = {Input2, output2};

63 nextéoutputlg =

64 case _

65 | nput 2 = next(output2) : 1nputl;

66 1 {inputl, outputl},

67/ esac;

68 FAI RNESS r unni n

69 FAIRNESS (inputl = 0 -> AF outputl =0) & (inputl =1
/0 ->AF outputl = 1) & (input2 =0 -> AF output2 = 0)
71 & (input2 =1->AF output2 = 1)

Slide 19 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...ABP

72 MODULE nai n

73 VAR

/4 S : process sender(ackChan. out put);
/5 R : process receiver(msgChan. out put 1,

nsgChan. out put 2) ; _ |
/6 nmsgChan : process twoBIt Chan(S. message, S.shit);
/7 ackChan : process oneBitChan(R ack);

78 ASS| GN _

79 Init(S.shit) .= 0;

80 init(Rrbit) :=0;

81 i1nit(Rack) :=1;

82 Init WBEChan.outputZ) = 1
83 init(ackChan.output) := 1;

| : St
84 SPEC A S.st = sent & S.nessage =1 ->
msgChan. outputl = 1)

Slide 20 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Logics for Reactive Systems

The are many specification languages for reactive systems,
e.g..

e regular expressions

e state-chats

e graphical interval logics
e modal mu-calculus

e linear time temporal logic
e CTL

o CTL"

° ...

Slide 21 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

LTL (linear time temporal logic)

LTL (linear time temporal logic) is closely related to CTL.
Its syntax Is the following:

Q=T [p[(=9) | (@AQ) [(@U@ [(GP) | (FO) | (X @)
Examples:

GF p
FG P

G(pVX p)
GpPp—F(

Slide 22 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

LTL vs. CTL

Comments:

e a LTL formula is evaluated on a path or set of paths;

for this reason the CTL qualifications E (there exists a
oranch) and A (all branches) are dropped (in this respect
_TL looks to be less expressive than CTL)

e however, LTL allows nesting modal operators in a way
not allowed In CTL, e.g., GF@(in this respect LTL looks
to be more expressive than CTL)

Apparently LTL ismore permissive asit allowsfor boolean combinations
of paths, but this may be donein CTP, too.

Slide 23 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

LTL semantics

Let M = (S,—,L) be a (CTL-like) model and t=1s; — ... a
path; 1 denotes the path s; — sj;1 — ...

The satisfaction relation 1t = @Is inductively defined as follows:

= |

= p iff p € L(s1)

— @ iff TTE @

=@/ \@iffTE@and = @
— X @ iff T =@

=G iffforalli>1, =@
= F @ iff forsomei> 1,1 =@

= @1 U @ iff there is some i > 1 such that T |= g and
forall j=1,....,i—1wehaveT = ¢

© N O OB W
H A A A A A A A

Slide 24 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Semantic equivalence

e Two LTL formulas @and are semantically equivalent,
written @ = (, If for any model they are true for the
same paths.

e An LTL formula @is satisfied in a state s of a model M
If @ holds for all paths starting at s.

Examples

G(pE—IF—I(p
F(eVUY) =FQVF Y
G(QAY) =G PAG Y

Note: From the CTL point of view, a LTL formula @ s iden-
tified with A[q@] (all paths are considered when formula sat-
Isfiability is to be checked)

Slide 25 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Until Identity

For all LTL formulas @and g

~(QU) =Y U(=QA =) VG Y
Proof:
—(U) is true
I
(1) either Y Is always false or
(2) ois false before Y becomes true
I
(1) either G = Is true or
(2) = U(—QA)
I
= U(—@A —) V G - is true
An equivalent formis. QU Y = (= U(—QA —P)) AF

Slide 26 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

CTL"

The syntax of CTL* define state formulas and path formulas
using the following mutually recursive definitions:

e state formulas (to be evaluated in states)
¢:=T/[p[(-9 | (e |Ala] | E[a]
e paths formulas (to be evaluated along paths)

az=¢[(-a)[(ana)|(xa)[(ca)|(Fa)|(aua)

Slide 27 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

CTL* - examples

Examples:

e Al(pur)V(qur)l: along all paths, either p is true until
r, or g is true until r (not equivalentto A[(pVv Q) U r])

e A[X pV XX p]: pistrue in the next state, or in the next
next state (not equivalentto AX p VAX AX p)

e E|GF p|: there is a path along which p is infinitely many
true (not equivalent to EG EF p)

Slide 28 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

CTL™ semantics

Let M = (S,—,L) be a model.

e If (pis a state formula, the notation M ,s = @ means that
@ holds In state s.

e If a a path formula, then M, 1= a means that a holds
along path 1t

These relations are inductively defined as follows:

Slide 29 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...CTL* semantics

1. M, sE=piff peL(s)

2. M, s=—@iff M,st~@
3M,sE@mA@ITTM,s=@ and M,s = @

4. M s = Ala] iff for any path tstarting from's, M, 1tl= a

5. M ,s = E|a] iff there is a path 1t starting from s such that
M,Tt=a

6. M, 1= @iff s is the first state of tand M ,s = @

7. M, tEaiA0 iff M, Tt=0q and M, TT= s

8. M .= xa iff M, 1t =a

9. M = Ga iff forall k > 0, M, ¥ = o

10. M, Tt = Fa iff there exists a k > 0 such that M, 1 = a

11. M Tt= aq U > iff there exists a k > 0 such that M, T |= a»
and forall0 < j <k, M, 70 =0y

Slide 30 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

LTL and CTL as subsets of CTL*

e CTL Isthe particular case of CTL* where the paths formu-
las are restricted to

a:=Xx@) (G| (FP | (U)
where @ Is a state formula. (In other words, each temporal
operator Is directly preceded by a path quantification A or

E leading to the known CTL operators consisting of ‘two
letters’: AG, etc.)

e an LTL formula a is identified with CTL* formula
Ala]

(semantically all paths are considered when LTL formula
satisfiability Is checked)

Slide 31 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

CTL, LTL, and CTL*

e LTL and CTL are incomparable with respect to their expressive
power

e a useful common extension CTL* was developed and exten-
sively studied

Example:
CTL* @1 = AG(EF p)
(3 = A[FG p]
phi4 Qs =MV Q3
Or:

@3 = A|GF p — F (]
P4 = E|GF p|

Slide 32 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...CTL, LTL, and CTL*

The CTL formula
phil = AGEF P
describes

“wherever we have got to, we can always get back
to a state in which p Is true”

This property can not be expressed in LTL. If thereisan LTL
formula @such that A[@] = AG EF p, then with respect to the
diagram

‘ SN
s@ O s O
~p P

P

M,s = AG EF p is valid, hence also M ,s = Alg@. On the
other hand, the paths in A’ of the diagram is a subset of the
paths in 94, hence M’,s = A[q], but this is not true.

Slide 33 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...CTL, LTL, and CTL*

The LTL formula
phi3 = A|[GF p — F (]
describes

“If there are infinitely many p along the path,
then there is an occurrence of g”

This property can not be expressed in CTL.

The CTL* formula
phi4 = E[GF p]
describes
“there Is a path with infinitely many p”
This property can be expressed neither in CTL nor in LTL.

Slide 34 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Miscellaneous

e Boolean combinations of paths in CTL.:
— E[FpPAFQ| = EF[p AEFQ| V EF[q A EFp]
(P1ud1) A (p2udz)] = E[(p1 A p2)u(dr A
E[p2ud2])] VE[(P1V p2)u(d2 A E[p1U01])]
— E[=(pug)] = E[-qu(—pA—0q)] VEG(Q

e The weak until operator w Is defined in LTL or CTL*
by
- pwq = (puq) vV Gp
This does not work in CTL, but the following identities
do the job

- E[pwq] = E[puq] V EGP

— A[pwq] = —E[-qu~(pV Q)]

Slide 35 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Fixed points

e LetSbeasetofstatesand F : P(S) — P(S) a function.
e F is called monotone if X CY implies F(X) C F(Y).
e An X € P(S) is called fixed point if F(X) = X.

e Denote FX(X) = F(F(...F(X)...)), where F is ap-
plied k times.

e F is called continuous if F(UXi) = UF (X;) for any in-
creasing sequence Xg C X1 C Xo....

Slide 36 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Kleene thorem

A well-known theorem of Kleene shows that in such a set-
ting

e a monotone and continuous F has both a least fixed
point, denoted uZ.F(Z), and a greatest fixed point, de-

noted denoted VZ.F(Z);
e moreover, the following formulas may be used to com-

pute them:
WZ.F(Z)=0UF(0)UF(F(0))U...

and
VZ.F(Z)=SNF(S) NF(F(S))N...

In the special case when S is finite, say with n elements, the
continuity condition is not necessary. Indeed,

Slide 37 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Fixed points on finite sets

Theorem: If S has n elements and F IS monotone, then
WZ.F(Z) = F”(Q)) and VZ.F(Z)= F”(S)
Proof:

(1) Clearly ® C F1(0); applying F we get F1(0 C F?(0);
repeating, we get: 0 C FX(0) C F2(0) C ... C F™1(0)
The above chain of inclusions can not be strict, hence
one of ‘C’ should In fact be an equality (otherwise at
each step we add at least one element, hence F™1(0)
will have at least n+ 1 elements, which is not possible);
it follows that for some 0 < ig < n, F'o(0) = F (F'o(0)),
which entails that F'o(0) is a fixed point.

Slide 38 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...Fixed points on finite sets

(2) To show that F'(0) is less than any other fixed point is
easy: Let X be a fixed point; then 0 C X; applying F we
get F(0) C F(X) = X; repeating, we get that F¥(0) C X
for any k, hence F'o(0) C X.

(3) The case of the greatest fixed point is similar, but one
has to start with S and the reverse the inclusions.

Slide 39 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Correctness of SATEy

Denote by [[@] the set of states satisfying ¢ and by F the
mapping

Z — WU (o] N{s: exists s’ such thats — s’ and s’ € Z}

Theorem: If F is as above and n = |S|, then: (1) F is

monotone: (2) [[E[@ U Y]] is the least fixed point of F; and
(3) [Elou W]] = F"(0)

Proof:

(1) The mappingH(Z) = {s: exists s’ such that s — s’ and s’ €
Z} is monotone (similar to a tutorial question). F is

obtained from H by intersection and union with certain
sets, hence I1s monotone, too.

Slide 40 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...Correctness of SATEy

(2) Looking at the states FX(0) we see that

— F 9(0) contains the states in [[];
— F 1(0) contains the states in [[]), or those in [[¢]
which have transitions to states in [[]];

In general,

FK(0) contains those states which have a path of
length less than k to a state in [[Y]] going through
states in [[@]|, only

hence the union of all FX(0) gives [[E[@ U Y]]

We know that the chain FK(@) is increasing and
F+1(0) is a fixed point, hence the union of all FX(0) is
just F"+1(0).

(3) already shown at (2)

Slide 41 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

...Correctness of SATEy

The final observation Is that SATgy uses an equivalent, but
somehow simpler iterative process: instead of

|:k+1(q))
= W] U ([[o] N {s: exists s’ suchthats —s"and s’ €

F¥(0)}
It uses the Iterative process

Flk—l—l(@)
= FX(0) U (@] N {s: exists s’ such that s — s’ and s’ €

F1(0)}

Slide 42 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

SATEG

function SATEG(®):
[* pre: @is an arbitrary CTL formula */
[* post: SATEg(@) returns the set of states satisfying EG @ */

local var X,Y
begin
X =0
Y ;= SAT(Q);
repeat until X =Y
begin
X:=Y;
Y:=YN{s€eS: existss’ withs »s"and s’ € Y };
end
return’Y
end

Slide 43 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

Correctness of SATEG

Denote by [[¢] the set of states satisfying @ and by G the mapping
Z — [[@] N {s: exists s’ such thats — s’ and s’ € Z}

Theorem: If F is as above and n = |S|, then: (1) G is monotone: (2)
[EG @] is the greatest fixed point of G; and (3) [EG ¢ = G"*1(S)

The proof is similar to the previous theorem.

Finally, instead of the iterative process
G*1(S) = [@] N {s: exists s’ such thats — s’ and s’ € GK(S)}

the sATEgg algorithm uses the simpler equivalent iterative process

GiTL(S) = GX(S) N {s: exists s’ such that s — s’ and s’ € GX(S)}

Slide 44 CS3234 — Logic and Formal Systems — Lecture 07 — 07/10/04

