Verification Methods

Verification methods may be classified according to the following
main criteria:

e Proof-based vs. model-based - if a soundness and complete-
ness theorem holds, than:
— proof = valid formula = true in all models;
— model-based = check satisfiability in one model
o Degree of automation - fully automated, partially automated,
or manual

e Full- vs. property-verification - a single property vs. full
behavior

e Domain of application - hardware or software; sequential or
concurrent; reactive or terminating; etc.

o Pre- vs. post-development

Program Verification — Where it Stands

Slide 1 €$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Used to verify sequential programs with infinite state and complex data.
e Proof based

e Semi-automatic — some steps cannot be carried out algorithmi-
cally by a computer.

Property-oriented

Aplication domain: Sequential, transformational programs

Pre/post development: the methods can be used during the devel-
opment process to create small proofs that can be subsequently
combined into proofs of larger program fragments.

Slide 2 C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Why should we specify and verify code

A formal specification is less ambiguous.

Experience has shown that verifying programs w.r.t. formal specifications
can significantly cut down the duration of software development and main-
tainance by eliminating most errors in the planning phase.

Makes debugging easier

Software built from formal specifications is easier to reuse.

Verification of safety-critical software guarantees safety; testing does not.

Many examples of software-related catastrophies due to lack of verification.

— Arianne rocket exploded immediately after launch
— Lost control of Martian probe
— Y2K problem

A Framework for Software Verification

Slide 3 €S3234 Logic and Formal Systems Lecture 08 21/10/04

As a software developer, you may get an order from a customer, which
provides an informal description of your task.

e Convert the informal description D of an application domain into
an “equivalent” formula ®p of some symbolic logic.

e Write a program P which is meant to realize ®p in the program-
ming environment required by the customer.

e Prove that P satisfies ®p.

Slide 4 €S83234 Logic and Formal Systems Lecture 08 21/10/04.

A Core Programming Language

We use a language with simple integer and boolean expressions, and
simple commands: assignment, if, and while commands.

E == n|x|(-E)|(E+E)|(E—E)|(E*E)
B = true|false|(!B)|(B&B)|(B||)|E <E
C = x=E|C;C|if B{C} else {C}|while B {C}
Example: v =1;
z = 0;

while (z != x) {
z=2z+1;
y=¥*2;

Hoare Triples

Slide 5 €$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

‘We need to be able to express the following statement: “If the execution
of a program fragment P starts in a state satisfying @, then the execution
of P ends in a state satisfying W. We denote this by:

(@) P(¥)

and we call this construct a Hoare triple. ® is called the precondition,
and W is called the postcondition.

Example: Assume that the specification of a program P is “to calculate
a number whose square is less that x.” Then, the following assertion
should hold:

(x>0) P y-y <)
It means: if we start execution in a state where x > 0, then the execution
of P ends with a state where y2 < X.

‘What happens if the execution starts with x < 0? We don’t know!

Slide 6 C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04.

Examples

Partial and Total Correctness

Both these examples realize the specification (x > 0) P (y-y < x).

(x>0) (x>0)
y=0 y=0
(y-y<x) while (y*y <x){
y=y+1
}
y=y-1
(vy-y<x)

e Partial correctness: we do not require the program to terminate.

o Total correctness: we do require the program to terminate.

Definition (partial correctness): We say that the triple () (W) is satisfied
under partial correctness if, for all states which satisfy @, the state resulting from
P’s execution satisfies the postcondition W, provided that P actually terminates.
In this case we write

Fpar () T (¥)

Definition (total correctness): We say that the triple (@) | (W) is satisfied total
partial correctness if, for all states in which P is executed and which satisfy the
precondition @, P is guaranteed to terminate, and the state resulting from P’s
execution satisfies the postcondition W. In this case we write

Fior () 91 (¥)

Slide 7 €$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Slide 8 C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Examples

Program Variables and Logical Variables

The following statement
Epar (@) while true { x=0; } (¥)

holds for all @ and ¥. The corresponding total correctness statement
does not hold.

Suce: We have:
a=zx+ 1
T Fpar (T Suce (y = -+ 1)
} else { and
Y= For (T Suce (y =x+1)

Remark: =, (@) P (V) implies [=par (P) P (¥).

Consider the examples:

Fac2: Sum:
y=1; z = 0;
while (x != 0) { while (x > 0) {
y =3 *x; zZ =2z + X
.l T) x=x-1;

} }

The values of y and z are functions of the original values of x. That value
is no longer available as a program variable at the end of the program.
We introduce logical variables to handle this situation.

Eor (x =x0 Ax > 0) Fac2 (y =xo!)

xo(x0+1)D

Eror (x =x9 Ax > 0) sum Qz: 2

Slide 9 €S3234 Logic and Formal Systems Lecture 08 21/10/04

Slide 10 €S83234 Logic and Formal Systems Lecture 08 21/10/04.

Proof Calculus for Partial Correctness

Proof Trees (1)

@) MGy
(¢) Ci;Cx (w)

Composition

WIE/A)x=E (¥) Assignment

(erB)Cily) ($A-B)Gi(y)

WD 7B {C1} Tise {Cz} (WD It-statement

(wnB)C(y)

sal-whil
, QIPD while B (C] (p A "BD Partial-while

F¢—od (¢)Cly) Fyp-oup

'3
Implied

(1=1ny=14y='1b]i (y=1A0=0)z = 0(y=1Az=0)
(My=1(p=1) (y=1)z=0(y=1Az=0)
(Th)y=1;,z-= ofy=1Az=0)

c

Slide 11 €$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Slide 12 C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04.

Proof Trees (2)

- e+)=E+1))z =zti(y-z=zl)
Qy=z!/\z#xbz=z+1(y~z=z!) ! (y-z=z!by=y*z(y=z!)
(y=zl/\z%xbz=z+1; y=y*z(y=z!) ¢

(r=z!)while (z != x) {z = z¢1; y = y*z}(y:z!/\z=xDYv

{y=1Az=0)while (z != x) {z = z+1; y = y*z} {y = x!)

Proof Trees (3)

Slide 13 €$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Using the rule for composition, we get

{TDy =1; z=0; while (z != x) {z = z+]:: y = y*z}(y=x!)

Slide 14 C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Proof Tableaux

The rule for sequential composition suggests a more convenient way of presenting
proofs in program logic: proof tableaux. We can think of any program of our core
programming language as a sequence.

Corresponding tableau:

Ci; (o))
(&H Ci;
: (@) justification
G ©: N
(D2) justification

Each of the transitions (®,—1) justification
-

Examples:Assignment

We show bpar(y =5)x = y + 1(x=6):

=5

{(y+1=6) Implied
x=y+1

(x=6) Assignment

We prove Fpar(y <3)y =y + 1 {y < 4):

(v<3)
(@) Ciz1 (Pis1) o o (v+1<4) Implied
v ! (®n) justification y
y=y+y
appeals to one of the proof rules X
(v<4) Assignment
Slide 15 €S3234 Logic and Formal Systems Lecture 08 21710/04 Slide 16 (83234 Logic and Formal Systems Lecture 08 21/10/04

Example: If Statement

Invariant

i
g(xb+1—1 =0-l=x+A(x+1—-1=0)—»x+1=x+1)} Implied
a=x+1;
Q(a—1=0—+1=x+1)/\(—-(a—1=0)—>a,=x+1)b Assignment
if (@ -1==0) {
(1=x+1) I-Statement
y= 1
(y=x+1) Assignment
} else {
Qu =x+ 1[) If-$tatement
y = a; i
{y=x+1) Adsignment
’ {y=x+1) Hf-Statement
Slide 17 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Definition: An invariant of the while-statement while B {C} having
guard B and body C is a formula 1 such that |=p,, (NAB) C (); i.e., if
M and B are true in a state and C is executed and terminates, then 1 is
again true in the resulting state.

Example:

y=1; iteration |z |y |B
z = 0; 0 0 1| true
vhile (z != x) { 1 1| 1|true
z=2z+1; 2 2 2 | true
y=y *z; 3 3 6 | true
} 4 4| 24| true
5 51120 | true
6 6| 720 | false

Invariant: y = z!

Slide 18 C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04.

Example

(M
(1=o01
y=1
(=09
z=0;
(=21
while (z != x) {
(y=z!Az#x)

(r-E+D=0+1Y)

z=2z+1;
(y-z=2)
y=y*z
tr=2)
} g
(y=2!A~(z #x))
r=x1

Implied

Assignment

Assignment

invariant Hyp. A guard
implied

Assignment

Assignment

Partial-while
Implied

Slide 19

€S§3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

While Rule for Total Correctness

(NABAO<E=Ep) C(NnAO<E <Ep)

Total-while

(WAO < E) while B {C} (nA—B)

Slide 20

C$3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Example
(x=0) .
(1=01n0<x—0) Implied
y=1
(y=01A0<x—0) Assigniment
z = 0;
(y=z1A0<x—12) Assignment

while (x != 2)

(y=z!Ax#zA0<x—2z=E)

{

Invariant Hyp. A guard

(7-E+1)=GE+)A0sx—(z+1)<E) Implied

z=2z+1;
(yz=2
y=y*z;

YA0 < x—z < Eo)

|Iy=z!/\05x—z<EoD

}

(r=zlAx=
(r==x)

7)

Assignment
Assignment

Total-while
Implied

Slide 21

€S3234 Logic and Formal Systems Lecture 08 21/10/04

