Verification Methods

Verification methods may be classified according to the following main criteria:

- Proof-based vs. model-based if a soundness and completeness theorem holds, than:
 - proof = valid formula = true in all models;
 - model-based = check satisfiability in one model
- Degree of automation fully automated, partially automated, or manual
- Full- vs. property-verification a single property vs. full behavior
- Domain of application hardware or software; sequential or concurrent; reactive or terminating; etc.
- Pre- vs. post-development

Slide 1

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Program Verification — Where it Stands

Used to verify sequential programs with infinite state and complex data.

- Proof based
- Semi-automatic some steps cannot be carried out algorithmically by a computer.
- Property-oriented
- Aplication domain: Sequential, transformational programs
- Pre/post development: the methods can be used during the development process to create small proofs that can be subsequently combined into proofs of larger program fragments.

Slide 2

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Why should we specify and verify code

- · A formal specification is less ambiguous.
- Experience has shown that verifying programs w.r.t. formal specifications can significantly cut down the duration of software development and maintainance by eliminating most errors in the planning phase.
- · Makes debugging easier
- Software built from formal specifications is easier to reuse.
- Verification of safety-critical software *guarantees* safety; testing does not.
- Many examples of software-related catastrophies due to lack of verification.
 - Arianne rocket exploded immediately after launch
 - Lost control of Martian probe
 - Y2K problem

Slide 3

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

A Framework for Software Verification

As a software developer, you may get an order from a customer, which provides an informal description of your task.

- Convert the informal description D of an application domain into an "equivalent" formula Φ_D of some symbolic logic.
- Write a program P which is meant to realize Φ_D in the programming environment required by the customer.
- Prove that P satisfies Φ_D .

Slide

CS3234 — Logic and Formal Systems — Lecture 08 — 21/1004

A Core Programming Language

We use a language with simple integer and boolean expressions, and simple commands: assignment, if, and while commands.

$$\begin{array}{ll} E & ::= & n|x|(-E)|(E+E)|(E-E)|(E*E) \\ B & ::= & \text{true}|\text{false}|(!B)|(B\&B)|(B||)|E < E \\ C & ::= & x=E|C;C|\text{if } B \ \{C\} \ \text{else} \ \{C\}|\text{while} \ B \ \{C\}|C| \\ \end{array}$$

Example:

Slide 5

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Hoare Triples

We need to be able to express the following statement: "If the execution of a program fragment P starts in a state satisfying Φ , then the execution of P ends in a state satisfying Ψ . We denote this by:

$$(\Phi) P(\Psi)$$

and we call this construct a *Hoare triple*. Φ is called the *precondition*, and Ψ is called the *postcondition*.

Example: Assume that the specification of a program *P* is "to calculate a number whose square is less that x." Then, the following assertion should hold:

$$(x > 0) P (y \cdot y < x)$$

It means: if we start execution in a state where x > 0, then the execution of P ends with a state where $y^2 < x$.

What happens if the execution starts with $x \le 0$? We don't know!

Slide 6

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Examples

Both these examples realize the specification $(x > 0) P(y \cdot y < x)$.

Slide 7

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Partial and Total Correctness

- Partial correctness: we do not require the program to terminate.
- Total correctness: we do require the program to terminate.

Definition (partial correctness): We say that the triple $(\Phi) \P(\Psi)$ is satisfied under partial correctness if, for all states which satisfy Φ , the state resulting from P's execution satisfies the postcondition Ψ , provided that P actually terminates. In this case we write

$$\models_{par} (\Phi) \P (\Psi)$$

Definition (total correctness): We say that the triple $(\Phi) \P$ (Ψ) is satisfied total partial correctness if, for all states in which P is executed and which satisfy the precondition Φ , P is guaranteed to terminate, and the state resulting from P's execution satisfies the postcondition Ψ . In this case we write

$$\models_{tot} (\!\!(\Phi)) \P (\!\!(\Psi))$$

CT L-O

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Examples

The following statement

$$\models_{pqr} (\Phi)$$
 while true $\{x = 0; \} (\Psi)$

holds for all Φ and Ψ . The corresponding total correctness statement does not hold.

Remark: $\models_{tot} (\Phi) P (\Psi) \text{ implies } \models_{par} (\Phi) P (\Psi).$

Slide 9

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Program Variables and Logical Variables

Consider the examples:

The values of y and z are functions of *the original* values of x. That value is no longer available as a program variable at the end of the program. We introduce logical variables to handle this situation.

$$\models_{tot} (\mathbf{x} = x_0 \land \mathbf{x} \ge 0)) \text{ Fac2 } (\mathbf{y} = x_0!)$$

$$\models_{tot}$$
 ($\mathbf{x} = x_0 \land \mathbf{x} > 0$) sum $\left(|\mathbf{z} = \frac{x_0(x_0 + 1)}{2}| \right)$

Slide 10

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Proof Calculus for Partial Correctness

$$\frac{(\phi) \ C_1 \ (\eta) \qquad (\eta) \ C_2 \ (\psi)}{(\phi) \ C_1; C_2 \ (\psi)} \ \text{Composition}} \cdot \frac{(\psi[E/x]) \ x = E \ (\psi)}{(\psi[E/x]) \ x = E \ (\psi)} \ \text{Assignment}$$

$$\frac{\left(\phi \wedge B\right) C_{1}\left(\psi\right) - \left(\phi \wedge \neg B\right) C_{2}\left(\psi\right)}{\left(\phi\right) \text{ if } B\left\{C_{1}\right\} \text{ else }\left\{C_{2}\right\}\left(\psi\right)} \text{ If-statement}$$

$$\frac{\left(\psi\wedge B\right)C\left(\psi\right)}{\left(\psi\right)\text{ while }B\left\{C\right\}\left(\psi\wedge\neg B\right)}\text{ Partial-while }$$

$$\frac{ \vdash \phi' \to \phi \qquad \left(\phi\right) C \left(\psi\right) \qquad \vdash \psi \to \psi'}{\left(\phi'\right) C \left(\psi'\right)} \text{ Implied}$$

Slide 11

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Proof Trees (1)

$$\frac{\left(1=1\right) y = 1 \left(y=1\right)}{\left(1\right) y = 1 \left(y=1\right)} i \frac{\left(y=1 \land 0=0\right) z = 0 \left(y=1 \land z=0\right)}{\left(y=1\right) z = 0 \left(y=1 \land z=0\right)} i \frac{\left(y=1\right) z = 0 \left(y=1 \land z=0\right)}{c} i$$

Slide 12

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Proof Trees (2)

$$\frac{\left(y\cdot(z+1)=(z+1)!\right)z=z+1\left(y\cdot z=z!\right)}{\left(y=z!\land z\neq x\right)z=z+1\left(y\cdot z=z!\right)}i \quad \left(y\cdot z=z!\right)y=y*z\left(y=z!\right)}{\left(y=z!\land z\neq x\right)z=z+1; \ y=y*z\left(y=z!\right)}c \\ \frac{\left(y=z!\land z\neq x\right)z=z+1; \ y=y*z\left(y=z!\right)}{\left(y=z!\right)\text{while } (z=x) \ \left\{z=z+1; \ y=y*z\right\}\left(y=z!\land z=x\right)}i \\ \frac{\left(y=z!\land z=0\right)\text{while } (z=x) \ \left\{z=z+1; \ y=y*z\right\}\left(y=z!\right)}{\left(y=z!\land z=0\right)}i$$

Slide 13

CS3234 - Logic and Formal Systems - Lecture 08 - 21/10/04

Proof Trees (3)

Using the rule for composition, we get

$$(\top)$$
 y = 1; z = 0; while (z != x) {z = z+1; y = y*z} (y = x!)

Slide 14

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Proof Tableaux

The rule for sequential composition suggests a more convenient way of presenting proofs in program logic: *proof tableaux*. We can think of any program of our core programming language as a sequence.

Corresponding tableau:

C₁; C₂; : : :

Each of the transitions

 $\{\Phi_i\}$ C_{i+1} $\{\Phi_{i+1}\}$ appeals to one of the proof rules

 $\begin{array}{c} (\Phi_0) \\ C_1; \\ (\Phi_1) \\ \end{array} \quad \begin{array}{c} \text{justification} \\ C_2; \\ (\Phi_2) \\ \end{array} \quad \begin{array}{c} \text{justification} \\ C_2; \\ (\Phi_n) \\ \end{array} \quad \begin{array}{c} \text{justification} \\ \end{array}$

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Examples: Assignment

We prove
$$\vdash_{par} (y < 3) y = y + 1 (y < 4)$$
:
 $(y < 3)$
 $(y + 1 < 4)$ Implied
 $y = y + 1$;
 $(y < 4)$ Assignment

(, ,

Example: If Statement

Slide 15

$$\begin{array}{ll} (\top) & \\ ((x+1-1=0\to 1=x+1) \land (\neg (x+1-1=0)\to x+1=x+1)) & \text{Implied} \\ \mathbf{a} = x+1; & \\ ((a-1=0\to 1=x+1) \land (\neg (a-1=0)\to a=x+1)) & \text{Assignment} \\ \text{if } (\mathbf{a}-1=0) & \\ (1=x+1) & \text{If-Statement} \\ \mathbf{y} = 1; & \\ (y=x+1) & \text{Assignment} \\ \} & \text{else } \{ & \\ (a=x+1) & \\ \mathbf{y} = \mathbf{a}; & \\ (y=x+1) & \text{Assignment} \\ \} & \\ (y=x+1) & \text{Assignment} \\ \} & \\ (y=x+1) & \text{If-Statement} \\ \end{array}$$

Slide 17

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04

Invariant

Definition: An *invariant* of the while-statement while $B \{C\}$ having guard B and body C is a formula η such that $\models_{par} \{\eta \land B\} \ C \{\eta\}$; i.e., if η and B are true in a state and C is executed and terminates, then η is again true in the resulting state.

Example:

y = 1;	iteration	z	у	В
z = 0;	0	0	1	true
while (z != x) {	1	1	1.	true
z = z + 1;	2	2	2	true
y = y * z;	3	3	6	true
1	4	4	24	true
×	5	5	120	true
	6	6	720	false

Invariant: y = z!

Slide 18 CS3234 — Logic and Formal Systems — Lecture 08 — 21/1004

```
Example
                      (T)
                      (1 = 0!)
                                                    Implied
                    y = 1;
                      (y=0!)
                                                    Assignment
                    z = 0;
                      (y=z!)
                                                    Assignment
                    while (z != x) {
                           (y=z! \land z \neq x)
                                                    Invariant Hyp. ∧ guard
                           (y\cdot(z+1)=(z+1)!)
                                                   Implied
                         z = z + 1;
                           (y \cdot z = z!)
                                                    Assignment
                         y = y * z;
                           (y=z!)
                                                    Assignment
                      (y = z! \land \neg (z \neq x))
                                                    Partial-while
                      (y = x!)
                                                    Implied
                                                    CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04
Slide 19
```

```
\frac{(\eta \land B \land 0 \leq E = E_0) \ C \ (\eta \land 0 \leq E < E_0)}{(\eta \land 0 \leq E) \ \text{while } B \ \{C\} \ (\eta \land \neg B)} \quad \text{Total-while} Side 20 CS234—Logic and Formal Systems—Lecture 08—21/1004
```

```
Example
     (x \ge 0)
    (1=0! \land 0 \le x-0)
                                                               Implied
 y = 1;
    (y=0! \land 0 \le x-0)
                                                               Assignment
 z = 0;
    (y=z! \land 0 \le x-z)
                                                               Assignment
 while (x != z) {
                                                               Invariant Hyp. \wedge guard
         (y = z! \land x \neq z \land 0 \le x - z = E_0)
         (y \cdot (z+1) = (z+1)! \land 0 \le x - (z+1) < E_0) Implied
       z = z + 1;
         (y \cdot z = z! \wedge 0 \le x - z < E_0)
                                                               Assignment
      y = y * z;
          (y = z! \wedge 0 \leq x - z < E_0)
                                                               Assignment
 }
    (y=z! \wedge x=z)
                                                               Total-while
                                                               Implied
     (y=x!)
Slide 21
                                                     CS3234 - Logic and Formal Systems - Lecture 08 - 21/1004
```

