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Verification methods may be classified according to the following
main criteria:

� Proof-based vs. model-based - if a soundness and complete-
ness theorem holds, than:

– proof = valid formula = true in all models;
– model-based = check satisfiability in one model

� Degree of automation - fully automated, partially automated,
or manual

� Full- vs. property-verification - a single property vs. full
behavior

� Domain of application - hardware or software; sequential or
concurrent; reactive or terminating; etc.

� Pre- vs. post-development



Program Verification — Where it Stands
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Used to verify sequential programs with infinite state and complex data.

� Proof based

� Semi-automatic — some steps cannot be carried out algorithmi-
cally by a computer.

� Property-oriented

� Aplication domain: Sequential, transformational programs

� Pre/post development: the methods can be used during the devel-
opment process to create small proofs that can be subsequently
combined into proofs of larger program fragments.



Why should we specify and verify code
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� A formal specification is less ambiguous.

� Experience has shown that verifying programs w.r.t. formal specifications
can significantly cut down the duration of software development and main-
tainance by eliminating most errors in the planning phase.

� Makes debugging easier

� Software built from formal specifications is easier to reuse.

� Verification of safety-critical software guarantees safety; testing does not.

� Many examples of software-related catastrophies due to lack of verification.

– Arianne rocket exploded immediately after launch

– Lost control of Martian probe

– Y2K problem



A Framework for Software Verification
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As a software developer, you may get an order from a customer, which
provides an informal description of your task.

� Convert the informal description D of an application domain into
an “equivalent” formula ΦD of some symbolic logic.

� Write a program P which is meant to realize ΦD in the program-
ming environment required by the customer.

� Prove that P satisfies ΦD.



A Core Programming Language
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We use a language with simple integer and boolean expressions, and
simple commands: assignment, if, and while commands.
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Example:



Hoare Triples
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We need to be able to express the following statement: “If the execution
of a program fragment P starts in a state satisfying Φ, then the execution
of P ends in a state satisfying Ψ. We denote this by:

� �
Φ

�� P
� �
Ψ

��
and we call this construct a Hoare triple. Φ is called the precondition,
and Ψ is called the postcondition.

Example: Assume that the specification of a program P is “to calculate
a number whose square is less that x.” Then, the following assertion
should hold: � �

x � 0
�� P

� �
y � y � x

��
It means: if we start execution in a state where x � 0, then the execution
of P ends with a state where y2 � x.

What happens if the execution starts with x � 0? We don’t know!



Examples
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Both these examples realize the specification
� �
x � 0

�� P
� �
y � y � x

�� .
� �
x � 0

��
� � �� �

y � y � x
��

� �
x � 0

��
� � �� ! � � � � � 	 � � � � �

� � � � �
�

� � � �
�� �

y � y � x
��



Partial and Total Correctness
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� Partial correctness: we do not require the program to terminate.

� Total correctness: we do require the program to terminate.

Definition (partial correctness): We say that the triple
� �
Φ

�� ¶
� �
Ψ

�� is satisfied
under partial correctness if, for all states which satisfy Φ, the state resulting from
P’s execution satisfies the postcondition Ψ, provided that P actually terminates.
In this case we write � � par

� �
Φ

�� ¶
� �
Ψ

��

Definition (total correctness): We say that the triple
� �
Φ

�� ¶
� �
Ψ

�� is satisfied total
partial correctness if, for all states in which P is executed and which satisfy the
precondition Φ, P is guaranteed to terminate, and the state resulting from P’s
execution satisfies the postcondition Ψ. In this case we write

� � tot
� �
Φ

�� ¶
� �
Ψ

��



Examples
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The following statement

� � par
� �
Φ

�� �"!#� � � 
 ��
 � � � � � ; � � �
Ψ

��
holds for all Φ and Ψ. The corresponding total correctness statement
does not hold.

We have:

� � par
� ��� ���� 
���� � �

y � x � 1
��

and � � tot
� ��� ���� 
���� � �

y � x � 1
��

Succ:

Remark:
� � tot

� �
Φ

�� P
� �
Ψ

�� implies
� � par

� �
Φ

�� P
� �
Ψ

�� .



Program Variables and Logical Variables
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Consider the examples:

Fac2: Sum:

The values of y and z are functions of the original values of x. That value
is no longer available as a program variable at the end of the program.
We introduce logical variables to handle this situation.

� � tot
� �

� � x0 � � � 0
�� � �

��� � � � � x0!
��

� � tot
� �

� � x0 � � � 0
�� � 
�� ��� � x0

�
x0 � 1 �

2

�



Proof Calculus for Partial Correctness
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Proof Trees (1)
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Proof Trees (2)
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Proof Trees (3)
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Using the rule for composition, we get



Proof Tableaux
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The rule for sequential composition suggests a more convenient way of presenting
proofs in program logic: proof tableaux. We can think of any program of our core
programming language as a sequence.

C1;
C2;
...
Cn

Corresponding tableau:
� �
Φ0

��
C1;� �

Φ1
�� justification

C2;� �
Φ2

�� justification
...

� �
Φn � 1

�� justification
C2;� �

Φn
�� justification

Each of the transitions

� �
Φi

�� Ci
�

1
� �
Φi

�
1
��

appeals to one of the proof rules



Examples:Assignment
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Example: If Statement
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Invariant
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Definition: An invariant of the while-statement while B � C � having
guard B and body C is a formula η such that

� � par
� �
η � B

�� C
� �
η

�� ; i.e., if
η and B are true in a state and C is executed and terminates, then η is
again true in the resulting state.

Example:

Invariant: y = z!



Example
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While Rule for Total Correctness
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���
η � B � 0 E � E0

��
C

���
η � 0 E � E0

��
���
η � 0 E

�� �
	 �
���
B � C � ���

η � � B
�� Total-while



Example
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