Verification Methods

Verification methods may be classified according to the following
main criteria:

e Proof-based vs. model-based - If a soundness and complete-
ness theorem holds, than:

— proof = valid formula = true in all models;
— model-based = check satisfiability in one model

e Degree of automation - fully automated, partially automated,
or manual

e Full- vs. property-verification - a single property vs. full

nehavior

e Domain of application - hardware or software; sequential or
concurrent; reactive or terminating; etc.

e Pre- vs. post-development

Slide 1 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Program Verification — Where it Stands

Used to verify sequential programs with infinite state and complex data.
e Proof based

e Semi-automatic — some steps cannot be carried out algorithmi-
cally by a computer.

e Property-oriented
e Aplication domain: Sequential, transformational programs

e Pre/post development: the methods can be used during the devel-
opment process to create small proofs that can be subsequently
combined into proofs of larger program fragments.

Slide 2 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Why should we specify and verify code

Slide 3

A formal specification is less ambiguous.

Experience has shown that verifying programs w.r.t. formal specifications
can significantly cut down the duration of software development and main-
tainance by eliminating most errors in the planning phase.

Makes debugging easier

Software built from formal specifications is easier to reuse.

Verification of safety-critical software guarantees safety; testing does not.
Many examples of software-related catastrophies due to lack of verification.

— Arianne rocket exploded immediately after launch
— Lost control of Martian probe
— Y2K problem

CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



A Framework for Software Verification

As a software developer, you may get an order from a customer, which
provides an informal description of your task.

e Convert the informal description D of an application domain into
an “equivalent” formula ®p of some symbolic logic.

e Write a program P which is meant to realize ®p in the program-
ming environment required by the customer.

e Prove that P satisfies 4.

Slide 4 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



A Core Programming Language

We use a language with simple integer and boolean expressions, and
simple commands: assignment, if, and while commands.

E = n|x|(-E)|(E+E)|(E—E)|(E*E)
B = true|false|(!B)|(B&B)|(B||)|E <E
C = x=E|C;C|ift B{C} else {C}|while B {C}
Example: v = 1;
z = 0;

while (z != x) {
z =2z + 1;

Y=Yy * 2z

Slide 5 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Hoare Triples

We need to be able to express the following statement: “If the execution
of a program fragment P starts in a state satisfying ®, then the execution
of P ends in a state satisfying Y. We denote this by:

(P) P (W)

and we call this construct a Hoare triple. @ is called the precondition,
and W is called the postcondition.

Example: Assume that the specification of a program P is “to calculate
a number whose square is less that x” Then, the following assertion
should hold:

(x>0)P(y-y<x)

It means: If we start execution in a state where x > 0, then the execution
of P ends with a state where y? < x.

What happens if the execution starts with x < 0? We don’t know!

Slide 6 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Examples

Both these examples realize the specification (x > 0) P (y-y < x).

(x> 0) (x>0)
y=0 y=0
(y-y<x) while (y*xy < x){
y=y+1
i
y=y—1
(y-y<x)

Slide 7 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Partial and Total Correctness

e Partial correctness: we do not require the program to terminate.

e Total correctness: we do require the program to terminate.

Definition (partial correctness): We say that the triple (®) T (W) is satisfied
under partial correctness if, for all states which satisfy ®, the state resulting from
P’s execution satisfies the postcondition W, provided that P actually terminates.
In this case we write

Fpar (P) T (W)

Definition (total correctness): We say that the triple (®) § (W) is satisfied total
partial correctness if, for all states in which P is executed and which satisfy the
precondition @, P is guaranteed to terminate, and the state resulting from P’s
execution satisfies the postcondition Y. In this case we write

Ftot (P) T (W)

Slide 8 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Examples

The following statement
Fpar (P) while true { x=0; } (V)

holds for all ® and W. The corresponding total correctness statement
does not hold.

Succ: We have:
a=x+ 1
if (a - 1 == 10 Fpar (T) Succe (y=x+1)
y =4
} else { and
} y = a; =tot (T) Succ (y=x+1)

Remark: f=tor (P) P (W) implies =par (P) P (V).

Slide 9 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Program Variables and Logical Variables

Consider the examples:

Fac?2: Sum
y = 1; z = (Q;
while (x != 0) { while (x > 0) {
y=y*x; Z =2Z + X;
x=x - 1; x=x - 1;

} }

The values of y and z are functions of the original values of x. That value
IS no longer available as a program variable at the end of the program.
We introduce logical variables to handle this situation.

=iot (x =XoAx > 0) Fac2 (y = Xo!)

MKN;+1)D

‘:tot (]X:Xo/\X> OI) sum QZ:

Slide 10 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Proof Calculus for Partial Correctness

(@) Cifn) () (v)
M’D Ci;Ca Glp[)

Composition

(v[E/x]) x =E (v) Assignment

(¢AB)Cilw)  (¢A—B)Ci(y)

(¢) it B {C1} else {C2} () lf-statement

| qlP f\BDCQwD
() wnile B {C} (v A -B)

Partial-while

~p qq&bcqu Fy—

Implied

Slide 11 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Proof Trees (1)

Slide 12 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Proof Trees (2)

(y-E+D)=@E+1D))z =21 (y-z=21)
(yv=z!Az#x)z = z+1 (y -z =z) 1 -z=zl)y = y*z(y =2z)

(y=zlAz#£x)z = z+1; y = y*z (y = z) ]

¢y=z!thila (z = x) {z = 'z+1;"y = yxz} qy=Z!f\Z=xD

QJ’=II\Z=0DWhile (z = x) {z = z+1; y = yrz} {y = x!)

W

i

Slide 13 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Proof Trees (3)

Using the rule for composition, we get

(TDy =1; 2z = 0; while (z = x) {z = z-I-l_; y = y*z} ‘[y:x!D

Slide 14 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Proof Tableaux

The rule for sequential composition suggests a more convenient way of presenting
proofs in program logic: proof tableaux. We can think of any program of our core
programming language as a sequence.

Corresponding tableau:

Ci; (Po)
C2; Ci;

(P1) justification
C, Co;

(DP2) justification

Each of the transitions (Pn_1) justification

Co;

(®i) Cira (Pita) (®n)  justification

appeals to one of the proof rules

Slide 15 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Examples:Assignment

We show Fpar(y =5)x =y + 1 (x=6):

(y=5)

(y+1=6) Implied
x=y+1

(x=6) Assignment

We prove bpar{y <3)y = v + 1 (¥ <4):

(v <3)

(v+1<4) Implied
y=y+1

(v <4) Assignment

Slide 16 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Example: If Statement

)

T
(x+1-1=0>1=x+1A(=(x+1—-1=0)—»x+1=x+1)} Implied

a=3x + 1; |
t](a—l—-O--a»1—-x+1]z\{—-(a—1=0}-—>q'=x+1)[) Assignment
if (a-1==0) {
(1=x+1) [f-Statement
¥y = 1
(y=x+1) Assignment
} else { )
;1 — I) If—$tatement
T |
t[ =x+ 1) Aééignment
} -
ﬂ}’ =X+ 1D if-Statement

Slide 17 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Invariant

Definition: An invariant of the while-statement whi | e B {C} having
guard B and body C is a formula n such that |=par (N AB) C (n); i.e., if
N and B are true in a state and C iIs executed and terminates, then n is
again true in the resulting state.

Example:
y = 1; iteration |z | y |B
z = 0; 0 0 1 | true
while (z != x) { 1 1| 1]true
z =2z + 1; 2 2 2 | true
y =y * z; 3 3| 6] true
} 4 4| 24| true
3 51120 | true
6 6 | 720 | false

Invariant: y = z!

Slide 18 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Example

(T)
(1=0!) | Implied
y=1;
(v =0!) Assignment
z = 0;
(v =2z!) Assignment
while (z != x) {
(y=2z!Az#x) Invariant Hyp. A guard
(y-(z+1)=(z+1)!) implied |
z=z+ 1;
q = z1) Assignment
. G % 3
1 z!) Assignment
}
(y =z! A —(z # x)) Partial-while
(v =xI) Implied

Slide 19 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



While Rule for Total Correctness

(NNBAO<E=Ey)C(nA0<E < Ep)
(NAO<E)while B {C} (NA—B]

Total-while

Slide 20 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



Example

(x = 0)
ﬂ =0!A0< x—0) Implied
‘I =D!/\O£x—0[] Assignment
t[y = Z! ADLx— ZD Assignment
while (x != z) {
(y=2z!Ax#2zA0<x—z=E) Invariant Hyp. A guard
ﬂy'(Z+1)=(Z+1)!/\0£x—(z+1)<EU[) Implied
z =2z + 1;
l[y'Z=z!A0<_:‘.x—z<:EuD Assignment
—— Y * z;
(y =2!A0 < x—2z < E) | Assignment
}
(v=z!Ax=2) Total-while

(v =x!) Implied

Slide 21 CS3234 — Logic and Formal Systems — Lecture 08 — 21/10/04



