
Modal Logics and Agents

CS3234 — Logic and Formal Systems — Lecture 09 — 28/10/04Slide 1

• In propositional or predicate logic, formulas are either true, or false, in any
model.

• In natural language we often distinguish between many modes of truth:

– necessarily true
– known to be true
– believed to be true
– true in the future

• For example, the sentence: “G. Bush is the president of the U.S.A.”, al-
though currently true, will not be true at some point in the future.

• The sentence: “There are nine planets in the solar system is true, and may
be true forever in the future, is not necessarily true, in the sense that it could
have been a different number.”

• The sentence: “The cubic root of 27 is 3” is true, necessarily true, and true
in the future. However, it may not be known to be true by some people, or
not believed to be true.



Modes of Truth
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• CTL could distinguish between truth at different points in the fu-
ture, as well as different futures. Temporal logic is thus a special
case of modal logic.

• Modal logic is also very useful in modelling artificial intelligence
problems, like the interaction of agents in various environments.
Each agent has different knowledge about its environment, and we
use modalities to model the knowledge of the agents.

• Modal logic adds unary connectives to express one, or more of
these modes of truth. The simplest modal logics deal with only
one concept, such as knowledge, necessity, or time.

• We take a logic engineering approach: given a particular mode
of truth, how can we develop a logic capable of expressing that
modality.



Basic Modal Logic — Syntax
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We add the extra connectives 2 and 3 to the set of connectives given in
propositional logic.

Definition: The formulas of basic modal logic φ are defined by the fol-
lowing BNF:

Φ ::= ⊥|>| p |¬Φ |(Φ∧Φ) |(Φ∨Φ) |(Φ → Φ) |(Φ ↔ Φ) |2Φ |3Φ

For these formulas, we define syntax trees in the usual way.

Convention: We assume that the unary connectives ¬, 2, and 3 bind
most closely, followed by ∧, and ∨, followed by → and ↔.



Basic Modal Logic — Semantics
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Definition: A model M of basic modal logic is specified by three things:

• A set W , whose elements are called worlds;

• A relation R ⊆W ×W , called the accessibility relation;

• A labelling function L : W → P (Atoms).

Such models are called Kripke models. Intuitively, w ∈ W stands for a
possible world and wRw′ means that w′ is a world related to w. The ac-
tual nature of the relationship depends on what we really want to model.



Graphical Representation
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If the wet of worlds W is finite, we can use an easy graphical notation
to represent a model. Suppose W = {x1,x2,x3,x4,x5,x6}, the relation
R = {(x1,x2),(x1,x3),(x2,x2),(x2,x3),(x3,x2),(x4,x5),(x5,x4),(x5,x6)},
and the labelling function given by the table:

x L(x)
x1 {q}
x2 {p,q}
x3 {p}
x4 {q}
x5 /0
x6 {p}

The Kripke model can be represented as:

p,q

q p

q p

x

x x x

x

x
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4 5 6



Model of Basic Modal Logic
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Definition: Let M = (W,R,L) be a model of basic modal logic. Suppose
x ∈W and φ is a formula. We define that φ is true in the world x, denoted
x 
 φ, inductively:

x 
 >
x 6
 ⊥
x 
 p iff p ∈ L(x)

x 6
 ¬φ iff x 6
 φ
x 
 φ∧ψ iff x 
 φ and x 
 ψ
x 
 φ∨ψ iff x 
 φ, or x 
 ψ

x 
 φ → ψ iff x 
 φ, whenever we have x 
 ψ
x 
 φ ↔ ψ iff x 
 φ iff x 
 ψ

x 
 2ψ iff , for each y ∈W with R(x,y), we have y 
 ψ
x 
 3ψ iff there is a y ∈W such that R(x,y) and y 
 ψ

We also write M ,x 
 φ to denote the fact that x 
 φ in the model M .



Model of Basic Modal Logic (cont’d)
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In the previous definition:

• The first two clauses simply express the fact that > is always true,
while ⊥ is always false.

• L(x) is the set of all atomic formulas that are true at x.

• The boolean connectives ¬, ∧, ∨, →, and ↔ is the same as in
propositional logic.

• For 2φ to be true at x, we require that φ be true in all worlds related
to x (resembles AX of CTL).

• For 3φ to be true at x, we require that φ to be true in at least one
related world (resembles EX of CTL).

Definition: A model M = (W,R,L) of basic modal logic is said to sat-
isfy a formula if every state in the modle satisfies it. Thus, we write
M |= φ iff, for each x ∈W , x 
 φ.



Examples
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• x1 
 q, since q ∈ L(x1).

• x1 
 3q, since x1Rx2 and x2 
 q.

• x1 6
 2q, since x3 6
 q.

• x5 6
 2p, and x5 6
 2q.

• x5 
 2(p∨q)
p,q

q p

q p

x

x x x

x

x

1

2

3

4 5 6



Comment
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Worlds like x6 in the previous slide, which have no worlds related to
them, have the property

x6 6
 3φ

for all formulas φ (even if φ is >). On the other hand, we have

x6 
 2φ

for all formulas φ (even when φ is ⊥).



Formulas and Formula Schemes

CS3234 — Logic and Formal Systems — Lecture 09 — 28/10/04Slide 10

Example: the formulas p → 23p, q → 23q, and (p∧3q) → 23(p∧
3q) are instances of the scheme

φ → 23φ.

The syntax tree of this scheme is:

φ

φ



Equivalences Between Modal Formulas
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Definition: We say that a set of formulas Γ of basic modal logic seman-
tically entails a formula φ of basic modal logic if, in any world x of any
model M = (W,R,L), we have x 
 φ whenever x 
 ψ, for all ψ ∈ Γ. In
that case, we write Γ |= φ. We say that φ and ψ are semantically equiva-
lent if φ |= ψ and ψ |= φ hold. We denote this by φ ≡ ψ.

Note: Any equivalence in propositional logic is an equivalence in modal
logic.



Example
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Remeber that p →¬q and ¬(p∧q) are equivalent in propositional logic.
Let us perform the substitution:

p 7→ 2p∧ (q → p)
q 7→ r → 3(q∨ p)

The result is the pair of modal logic formulas:

2p∧ (q → p) →¬(q 7→ r → 3(q∨ p))
¬((2p∧ (q → p))∧ (r → 3(q∨ p)))

are semantically equivalent.



De Morgan Rules and Distributivity
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De Morgan rules:

¬2φ ≡ 3¬φ (resembles ¬∀xφ ≡ ∃x¬φ)
¬3φ ≡ 2¬φ (resembles ¬∃xφ ≡ ∀¬φ)

2 distributes over ∧ and 3 distributes over ∨.

2(φ∧ψ) ≡ 2φ∧2ψ and 3(φ∨ψ) ≡ 3φ∨3ψ



Valid Formulas
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Definition: A formula of basic modal logic is said to be valid if it is true
in every world of every model, i.e. iff |= φ.

Every propositional tautology is valid in modal logic.



Valid Formulas (cont’d)
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The following formulas are valid:

¬2φ ↔ 3¬φ
2(φ∧ψ) ↔ 2φ∧2ψ
3(φ∨ψ) ↔ 3φ∨3ψ
2(φ → ψ)∧2φ → 2φ
2(φ → ψ) → (2φ → 2φ)

Proof of validity for the first formula: Let M = (W,R,L) be a model,
and x ∈ W . We want to show x 
 ¬2φ ↔ 3¬φ, i.e. that x 
 ¬2φ iff
x 
 2¬φ. The following chain of reasoning follows:

x 
 ¬2φ
iff it isn’t the case that x 
 2φ
iff it isn’t the case that, for all y such that R(x,y), y 
 φ
iff there is some y such that R(x,y) and not y 
 φ
iff there is some y such that R(x,y) and y 
 ¬φ
iff x 
 3¬φ



Logic Engineering
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• The basic framework is quite general and can be refined in various
ways to provide the properties that are appropriate for the intended
applications.

• Logic engineering is the subject of engineering logics to fit new
applications.

• We will consider how to engineer the basic framework for modal
logic to fir the following readings of 2φ.

– It is necessarily true that φ
– It will always be true that φ
– It ought to be that φ
– Agent Q believes that φ
– Agent Q knows that φ
– After any execution of program P, φ holds.



Logic Engineering (cont’d)
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Since 3 can be expressed as ¬2¬, we can find the corresponding read-
ings for 3.

For example, the reading of 3φ corresponding to “It is necessarily true
that φ can be inferred in the following steps:

• “It is not necessarily true that φ” = “It is possible that ¬φ.”

• “It is not necessarily true that ¬φ” = “It is possible that not not φ”=
“It is possible that φ”.

The reading of 3φ corresponding to “Agent Q knows φ” can be derived
as follows:

agent Q does not know not φ
= as far as Q’s knowledge is concerned, φ
could be the case
= φ is consistent with what agent Q knows
= for all agent Q knows, φ.



Readings of Modal Connectives
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2φ 3φ
It is necessarily true that φ It is possibly true that φ
It will always be true that φ Sometime in the future φ
It ought to be that φ It is permitted to be that φ
Agent Q believes that φ φ is consistent with Q’s beliefs
Agent Q knows that φ For all Q knows, φ
After any execution of program P, φ holds After some execution of P, φ holds



The Stock of Valid Formulas
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• For a logic that captures the concept of necessity, we must have
2p → p.

• This can be read as: “for anything which is necessarily true, is also
simply true.”

• Or, “whatever agent Q knows is true”. (everything that is known
must also be true; on the other hand, things that are believed are
not necessarily true).



The Stock of Valid Formulas (2)
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The table shows six interesting readings for 2 and eight formula schemes. It is rather
debatable whether to put a cross or a tick in some of the boxes; this depends on the
concept of truth we are trying to formalize.

2φ 2
φ→

φ

2
φ→

2
2

φ

3
φ→

2
3

φ

3
>

2
φ→

3
φ

2
φ∨

2
¬φ

2
(φ
→

ψ)∧
2

φ→
2

ψ

3
φ∧

3
ψ→

3
(φ
∧ψ)

It is necessarily true that φ
√ √ √ √ √ × √ ×

It will always be true that φ × √ × × × × √ ×
It ought to be that φ × × × √ √ × √ ×
Agent Q believes that φ × √ √ √ √ × √ ×
Agent Q knows that φ

√ √ √ √ √ × √ ×
After any execution of program P, φ holds × × × × × × √ ×



Necessity
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Consider the formulas 2φ → 22φ.

• Reading: “What is necessary, is also necessarily necessary.”

• If we are dealing with physical necessity, this amounts to whether
the laws of the universe are a physical necessity.

• That is, do the laws of the universe entail that they should be the
laws of the universe? The answer seems to be “no”.

• What if we meant logical necessity? The answer must now be
“yes”, since the laws of logic are assertions whose truth cannot be
denied.



Always in the Future
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The future may or may not include the present.

• If the future does not include the present, then 2φ → φ is not valid.

• The validity of the formula 3> can be interpreted as “time has no
end”. Whether this formula should be valid or not also depends of
how we want to interpret time.



Ought
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• In this case, 2 is interpreted as “ought”, and 3 is interpreted as
“permitted”.

• The formula 2φ → 22φ is not valid.

• Example: “It ought to be the case that we wear a seat-belt” does
not compel us to believe that “It ought to be the case that we ought
to wear a belt”.

• However, anything which ought to be so, should be permitted to
be so, and therefore 3φ → 3φ.



Belief
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• To decide if 3> should be valid, let us express it as ¬2⊥.

• ¬2⊥ is read as “Agent Q does not believe any contradictions”.

• We need to be precise about whether we model human beings,
which may not be capable of perfect reasoning, or not.

• Typically, it is preferred to model idealized agents, capable of per-
fect reasoning, and therefore able to spot any contradiction.

• The formula 3φ → 23φ reads as “If agent Q doesn’t believe
something, then he believes he doesn’t believe it.” — it is rea-
sonable to assume it is valid.

• Validity of the formula 2φ∨2¬φ means that agent Q has an opin-
ion on everything — we assume this is not reasonable, and there-
fore this formula is not valid.



Knowledge
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While agent Q may have false beliefs, he may only know only that which
is true.

• 2φ → 22φ — “if one knows something, he/she knows he/she
knows it” — should be valid.

• ¬2φ → 2¬2φ — “if one doesn’t know something, he/she knows
he/she doesn’t know it.” — should be valid only if we model ide-
alized agents. (it is not true of ordinary humans).



Execution of Programs
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• 2φ → 22φ says that running the program twice is the same as
running it once — false if the program deducts money from a bank
account!

• 3> is read as “there is an execution of the program which termi-
nates.” — again false.



Properties of the Accessibility Relation
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• We have been engineering logics at the level of deciding what for-
mulas should be valid for the various readings of 2.

• We can also engineer at the level of Kripke models.

• For each of our seven readings of 2, there is a corresponding read-
ing of the accessibility relation R.

• In some of these readings, it will be useful to stipulate that R is
reflexive, or transitive, or has other properties.



The meaning of R, for readings of 2
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2φ R(x,y)
It is necessarily true that φ y is possible according to the

information at x

It will always be true that φ y is in the future of x

It ought to be that φ y is acceptable according to
the information at x

Agent Q believes that φ y could be the actual world ac-
cording to Q’s beliefs at x

Agent Q knows that φ y could be the actual world ac-
cording to Q’s knowledge at x

After any execution of program P, φ holds y is a possible resulting state
after execution of P at x



Types of Binary Relations
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• reflexive: if, for every x ∈W , we have R(x,x).

• symmetric: if, for every x,y ∈W , we have R(x,y) implies R(y,x).

• serial: if, for every x there is a y such that R(x,y).

• transitive: if, for every x,y,z ∈W , we have R(x,y) and R(y,z) imply R(x,z).

• Euclidian: if, for every x,y,z ∈W with R(x,y) and R(x,z), we have R(y,z).

• functional: if, for each x there is a unique y such that R(x,y).

• linear: if, for every x,y,z ∈ W we have that R(x,y) and R(x,z) together
imply that R(y,z), or y equals z, or R(z,y).

• total: if for every x,y ∈W we have R(x,y) or R(y,x).

• equivalence relation: reflexive, symmetric and tansitive.



Example
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If 2φ means “Agent Q knows φ”, then R(x,y) means y could be the actual
world according to Q’s knowledge at x.

• Should R be reflexive? This would say: x could be the actual world
according to Q’s knowledge at x. In other words, Q cannot know
that things are different from how they really are — i.e. Q cannot
have false knowledge. This seems a desirable property to have.

• Should R be transitive? It would say: if y is possible according to
Q’s knowledge at x and z is possible according to Q’s knowledge
at y, then z is possible according to Q’s knowledge at x. This again
should be true.


