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• There appeared to be a correspondence between the validity of 2Φ→Φ and
the property that the accessibility relation R is reflexive. The connection
between them is that both relied on the intuition that anything which is
known by an agent is true.

• There also seemed to be a correspondence between 2Φ → 22Φ and R
being transitive; they both seem to assert the property of positive introspec-
tion, i.e. that which is known is known to be known.

• To every formula scheme there corresponds a property of R.

• This relationship helps one to understand the logic being studied.

– If you believe that a certain formula scheme should be accepted in the
system of modal logic you are engineering, then it is worth looking at
the corresponding property of R and checking that that makes sense
for the application.

– For some formulas it may seem difficult to understand what they
mean, so looking at the corresponding property of R can help.



Frames
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Definition: A frame F = (W,R) is a set W (of worlds) and a binary relation R on W .

• A frame is like a Kripke model, except that it has no labelling function.
• From any model we can extract a frame, by just forgetting about the labelling

function; the figure below shows a Kripke model and its frame.
• A frame is just a set of “points” and the relationship between them. It has no

information about what atomic formulas are true at the various points.
• It is useful to say sometimes that the frame, as a whole, satisfies a formula.
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Formula Satisfied by a Frame
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Definition: A frame F = (W,R) satisfies a formula of basic modal logic
Φ, written F |= Φ, if for each labeling function L and each w ∈ W , we
have M ,w  Φ, where M = (W,R,L).

• If a frame satisfies a formula, then it also satisfies every substitu-
tion instance of that formula.

• For example, the model of the figure given below satisfies p∨3p∨
33p, but it does not satisfy every instance of Φ∨3Φ∨33Φ;

• On the other hand, for the corresponding frame, x6 does not satisfy
q∨3q∨33q; but because frames do not contain any information
about the truth or falsity of propositional atoms, they can’t distin-
guish between different atoms; so, if a frame satisfies a formula, it
also satisfies the formula scheme obtained by substituting the p, q
etc. by Φ, Ψ etc.



Example
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The frame in the figure satisfies 2p → p. To see this, we have to consider any
labeling function of the frame and show that each world satisfies the formula for
each labeling.

Generic argument: Let x be any world. Suppose x  2p; we want to show x  p.
We know that R(x,x) because each x is related to itself. It follows that x  p.

• Our frame satisfies any formula of this shape, i.e. it satisfies the formula
scheme 2Φ → Φ.

• The frame does not satisfy the formula 2p → 22p. Take the labeling
L(x4) = {p},L(x5) = {p},L(x6) = /0; then x4  2p, but x4 6 22p.



First Correspondence Theorem
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Theorem: Let F = (W,R) be a frame.

1. The following statements are equivalent:

– R is reflexive;
– F satisfies 2Φ → Φ;
– F satisfies 2p → p;

2 The following statements are equivalent:

– R is transitive;
– F satisfies 2Φ → 22Φ;
– F satisfies 2p → 22p.

Proof: For each of the cases, there are three things to prove: (a) that,
if R has the property, then the frame satisfies the formula scheme; and
(b) that, if the frame satisfies the formula scheme then it satisfies the
instance of it; and (c) that, if the frame satisfies the formula, then R has
the property.



Proof of the First Correspondence Theorem (1)
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(a) Suppose R is reflexive. Let L be a labelling function, so now M = (W,R,L)
is a model of basic modal logic. We need to show M |= 2Φ → Φ. That
means we need to show x  2φ → Φ for any x ∈W , so pick any x. Suppose
x  2Φ; since R(x,x), it immediately follows from the clause for 2 that
x  p. Therefore, we have shown x  2Φ → Φ.

(b) We just set Φ to be p.

(c) Suppose the frame satisfies 2p → p. Take any x. We show R(x,x). Take a
labelling function L such that p 6∈ L(x) and p ∈ L(y) for all worlds y except
x. Suppose we don’t have R(x,x). Then, x  2p, since all the worlds related
to x satisfy p but since F satisfies 2p → p, it follows that x  2p → p;
therefore, putting x  2p and x  2p → p together, we get x  p. This is a
contradiction, since we said that p 6∈ L(x). We got this contradiction just by
assuming that we didn’t have R(x,x). So this assumption cannot be made.
It must be that R(x,x) holds in our frame!



Proof of the First Correspondence Theorem (2)
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(a) Suppose R is transitive. Let L be a labelling function and M = (W,R,L).
We need to show M  2Φ → 22Φ. That means we need to show x 

2Φ → 22Φ, for any x ∈ W , so pick any x. Suppose x  2Φ; we need
to show x  22Φ. That is, using the clause for 2, any y such that R(x,y)
satisfies 2Φ; that is, for any y, z with R(x,y) and R(y,z), we have z  Φ.
Suppose we did have y and z with R(x,y) and R(y,z). By the fact that R is
transitive, we obtain R(x,z). But we’re supposing that x  2Φ, so (clause
for 2) that means z  Φ, which is what we needed to prove.

(b) Again, just set Φ to be p.

(c) Suppose the frame satisfies 2p → 22p. Take any x, y and z with R(x,y)
and R(y,z); we are going to show R(x,z). Take a labelling function L such
that p 6∈ L(z) and p ∈ L(w) for all worlds w except z. Suppose we don’t
have R(x,z); then x  2p, since w  p for all w 6= z. Using the axiom
2p →22p, it follows that x  22p; i.e., y  2p (since R(x,y)), i.e., z  p
(since R(y,z)). So we get a contradiction. Thus, we must have R(x,z).



Second Correspondence Theorem
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Theorem: A frame F = (W,R) satisfies a formula scheme in the table
below iff R has the corresponding property in that table.

The names of the formulas in the left-hand column are historical, but
have stuck and are still used widely in the literature.



Some Modal Logics
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We build a modal logic by picking and choosing among formula schemes, according
to the application at hand.

Definition: A modal logic L is a subset of formulas of basic modal logic, with the
following properties:

1. L is closed under propositional logic. That is, anything which can be derived
from members of L using propositional logic is itself a member of L.

2. L contains all instances of the formula scheme K:

2(Φ → Ψ) → (2Φ → 2Ψ).

3. L is closed under the rule of necessitation; this says that, if Φ ∈ L, then also
2Φ ∈ L.

4. L is closed under taking substitution instances; meaning that, if Φ is in L, then
any substitution instance of Φ is also in L.

To build a modal logic, choose the formula schemes which you would like to have
inside it. These are called the axioms of the logic. Then, ’close’ it under the condi-
tions of the definition.



The Modal Logic K
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• The weakest modal logic doesn’t have any ’optional’ formula
schemes.

• It just contains propositional logic and all instances of the formula
scheme K, together with other formulas which come from apply-
ing conditions 3 and 4 of the definition on slide 9.

• The name K is given to this logic (as well as being given to the
formula scheme K).



The Modal Logic KT 45
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• Modal logic KT 45 (also called S5 in the literature), adds three extra axioms.

• This is used to reason about knowledge; 2Φ means that the agent Q knows
Φ. The axioms T , 4 and 5, respectively, tell us that

T . Truth: the agent Q knows only true things.

4. Positive introspection: if the agent Q knows something, then she
knows that she knows it.

5. Negative introspection: if the agent Q doesn’t know something, then
she knows that she doesn’t know it.

• The formula scheme K means logical omniscience: the agent’s knowledge
is closed under logical consequence.

• Note that these properties represent idealisations of knowledge.

• Human knowledge has none of these properties! Even computer agents
may not have them all.



KT 45 Properties
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• The semantics of the logic KT 45 must consider only relations R
which are: reflexive (T ), transitive (4), and Euclidean (5).

• A relation is reflexive, transitive and Euclidean iff it is reflexive,
transitive and symmetric, i.e. if it is an equivalence relation.

• KT 45 is simpler than K in the sense that it has few essentially
different ways of composing modalities.

Theorem Any sequence of modal operators and negations in KT 45 is
equivalent to one of the following: −, 2, 3, ¬, ¬2, and ¬3, where −
indicated the absence of any negation or modality.



The Modal Logic KT 4
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• The modal logic KT 4 is also called S4 in the literature.

• Correspondence theory tells us that its models are precisely the Kripke models
(W,R,L), where R is reflexive and transitive.

• Such structures are often very useful in computer science.

– If Φ stands for the type of a piece of code, then 2Φ could stand for resid-
ual code of type Φ. Thus, in the current world x this code would not have
to be executed, but could be saved (= residualised) for execution at a later
computation stage.

– The formula scheme 2Φ → Φ, the axiom T , then means that code may be
executed right away, whereas the formula scheme 2Φ → 22Φ (the axiom
4) allows that residual code remain residual, i.e. we can repeatedly postpone
its execution in future computation stages.

– Such type systems have important applications in the specialisation and par-
tial evaluation of code.

Theorem: Any sequence of modal operators and negations in KT 4 is equivalent to one
of the following: −, 2, 3, 23, 32, 232, 323, ¬, ¬2, ¬3, ¬23, ¬32, and
¬323.



Intuitionistic Propositional Logic
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At the beginning of this course we gave a natural deduction system for
propositional logic which was sound and complete with respect to se-
mantic entailment based on truth tables. We also pointed out that the
proof rules RAA, LEM and ¬¬e are questionable in certain computa-
tional situations. If we disallow their usage in natural deduction proofs,
we obtain a logic, called intuitionistic propositional logic, together with
its own proof theory. So far so good; but it is less clear what sort of
semantics one could have for such a logic (again with soundness and
completeness in mind).

This is where certain models of KT 4 will do the job quite nicely. Recall
that correspondence theory implies that a model M = (W,R,L) of KT 4
is such that R is reflexive and transitive. The only additional requirement
we impose on a model for intuitionistic propositional logic is that its
labeling function L be monotone in R: xRy implies that L(x) is a subset
of L(y). This models that atomic positive formulas persist throughout
the worlds that are reachable from a given world.



Models of Intuitionistic Propositional Logic
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Definition: A model of intuitionistic propositional logic is a model M =
(W,R,L) of KT 4 such that xRy always implies L(x) ⊆ L(y). Given a
propositional logic formula without negation, we define x  Φ in the
usual way with the exception of the interpretation of implication and
negation. For Φ1 → Φ2 we define x  Φ1 → Φ2 iff for all y with xRy we
have y  Φ2 whenever we have we have yh¬  Φ1. For ¬Φ we define
x  ¬Φ iff for all y with xRy we have y¬  Φ.

As an example of such a model consider W = {x,y}, the relation R given
by R(x,x), R(x,y) and R(y,y). Note that R is indeed reflexive and tran-
sitive. The labelling function L satisfies L(x) = /0 and L(y) = {p}. We
claim that x¬ p∨¬p (recall that p∨¬p is an instance of LEM) Clearly,
we do not have x  p, for p is not in the set L(x), which is empty. Thus,
x  p∨¬p can hold only if x  ¬p holds. But x  ¬p simply does not
hold, since there is a world y with xRy such that y  p holds, for p∈ L(y).
Here you can see that the availability of possible worlds in the models of
KT 4 together with a ’modal interpretation’ of implications and negations
broke down the validity of the theorem LEM in classical logic.



Semantic Entailment
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Definition: Let L be a modal logic. Such a logic is completely given
by a collection of formula schemes, the axioms of L. Given a set Γ of
basic modal formulas and Φ a formula of basic modal logic, we say that
Γ semantically entails Φ in L and write

Γ |=L Φ

iff Γ∪L semantically entails Φ in basic modal logic.

Thus, we have Γ |=L Φ if every Kripke model and every world x satisfy-
ing Γ∪L therein also satisfies Φ.



Natural Deduction
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• Computing semantic entailment would be rather difficult if we had only the definition
given in the previous slide. We would have to consider every Kripke model and every
world in it.

• Fortunately, we have a much more usable approach, which is an extension, respectively
adaptation, of the systems of natural deduction developed for propositional and predicate
logic.

• We presented natural deduction proofs as linear representations of proof trees which may
involve proof boxes which control the scope of assumptions, or quantifiers.

• The proof boxes have formulas and/or other boxes inside them.

• There are rules which dictate how to construct proofs. Boxes open with an assumption;
when a box is closed (in accordance with a rule) we say that its assumption is discharged.

• Formulas may be repeated and brought into boxes, but may not be brought out of boxes.

• Every formula must have some justification to its right: a justification can be the name
of a rule, or the word ’assumption’, or an instance of the proof rule copy.



Natural Deduction Rules for Modal Logic
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• We introduce a new kind of proof box, to be drawn with dashed lines. This is
required for the rules for the connective 2.

• Going into a dashed box means reasoning in an arbitrary related world. If at any
point in a proof we have 2Φ, we could open a dashed box and put Φ in it.

• Then, we could work on this Φ, to obtain, for example, Ψ. Now we could come
out of the dashed box and, since we have shown Ψ in an arbitrary related world,
we may deduce 2Ψ in the world outside the dashed box.

• The rules for bringing formulas into dashed boxes and taking formulas out of
them are the following:

...
Φ

2Φ
2i

2Φ

...
Φ
...

2e



The Rules for KT 45
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The rules 2i and 2e are sufficient for the modal logic K. Stronger modal
logics such as KT 45 require some extra rules if one wants to capture
semantic entailment via proofs. In the case of KT 45, this extra strength
is coded up by rule forms of the axioms T, 4 and 5, as follows:

2Φ
Φ

T
2Φ

22Φ
4

¬2Φ
2¬2Φ

5



Example
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Reasoning About Knowledge in a Multi-Agent System
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• In a multi-agent system, different agents have different knowledge of the
world.

• An agent may need to reason about its own knowledge about the world; it
may also need to reason about what other agents know about the world.

• For example, in a bargaining situation, the seller of a car must consider what
a buyer knows about the car’s value.

• The buyer must also consider what the seller knows about what the buyer
knows about the value and so on.

• Reasoning about knowledge refers to the idea that agents in a group take into
account not only the facts of the world, but also the knowledge of other agents
in the group.

• Example of such reasoning: Dean doesn’t know whether Nixon knows that
Dean knows that Nixon knows that McCord burgled O’Brien’s office at
Watergate.



The Wise Men Puzzle
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There are three wise men. It’s common knowledge — known by everyone and
known to be known by everyone, etc. — that there are three red hats and two
white hats. The king puts a hat on each of the wise men in such a way that they
are not able to see their own hat, and asks each one in turn whether they know the
colour of the hat on their head. Suppose the first man says he does not know; then
the second says he does not know either.

It follows that the third man must be able to say that he knows the colour of his
hat. Why is this? What colour has the third man’s hat?

To answer these questions, let us enumerate the seven possibilities which exist:
they are

R R R
R R W
R W R

R W W
W R R

W R W
W W R

where (for example) R W W refers to the situation that the first, second and third
men have red, white and white hats, respectively. The eighth possibility, W W W,
is ruled out by the fact that there are only two white hats.



The Wise Men Puzzle (cont’d)
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Now let’s think of it from the second and third men’s point of view.

• When they hear the first man speak, they can rule out the possi-
bility of the true situation being R W W, because if it were this
situation, then the first man, seeing that the others were wearing
white hats and knowing that there are only two white hats, would
have concluded that his hat must be red.

• As he said that he did not know, the true situation cannot be R
W W. Notice that the second and third men must be intelligent in
order to perform this reasoning; and they must know that the first
man is intelligent and truthful as well.

• In the puzzle, we assume the truthfulness and intelligence and per-
ceptiveness of the men are common knowledge - known by every-
one and known to be known by everyone, etc.



The Wise Men Puzzle (cont’d)
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• When the third man hears the second man speak, he can rule out
the possibility of the true situation being W R W, for similar rea-
sons: if it were that, the second man would have said that he knew
his hat was red, but he did not say this.

• The third man can also rule out the situation R R W when he hears
the second man’s answer, for this reason: if the second man had
seen that the first was wearing red and the third white, he would
have known that it must be R W W or R R W; but he would have
known from the first man’s answer that it couldn’t be R W W, so
he would have concluded it was R R W and that he was wearing a
red hat; but he did not draw this conclusion, so, reasons the third
man, it cannot be R R W.



The Wise Men Puzzle (cont’d)
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• Having heard the first and second men speak, the third man has
eliminated R W W, W R W and R R W, leaving only R R R, R W
R, W R R and W W R. In all of these he is wearing a red hat, so
he concludes that he must be wearing a red hat.

• Notice that the men learn a lot from hearing the other men speak.
We emphasise again the importance of the assumption that they
tell the truth about their state of knowledge and are perceptive and
intelligent enough to come to correct conclusions.

• Indeed, it is not enough that the three men are truthful, perceptive
and intelligent; they must be known to be so by the others and (in
later examples) this fact must also be known, etc. Therefore, we
assume that all this is common knowledge.



The Muddy Children Puzzle
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There is a large group of children playing in the garden (their perceptiveness,
truthfulness and intelligence is common knowledge). A certain number of chil-
dren (say k) get mud on their foreheads. Each child can see the mud on others, but
not on his own forehead. If k > 1, then each child can see another with mud on
its forehead, so each one knows that at least one in the group is muddy. Consider
these two scenarios:

Scenario 1. The father repeatedly asks the question ’Does any of you know
whether you have mud on your own foreheadT. The first time they all an-
swer’no’; but, unlike in the wise-men example, they don’t learn anything
by hearing the others answer ’no’, so they go on answering 4 ’no’ to the
father’s repeated questions.

Scenario 2. The father first announces that at least one of them is muddy
(which is something they know already); and then, as before, he repeatedly
asks them ’Does any of you know whether you have mud on your own fore-
head?’. The first time they all answer ’no’. Indeed, they go on answering
’no’ to the first k− 1 repetitions of that same question; but at the kth those
with muddy foreheads are able to answer ’yes’.



Comments
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At first sight, it seems rather puzzling that the two scenarios are differ-
ent, given that the only difference in the events leading up to them is
that in the second one the father announces something that they already
know. It would be wrong, however, to conclude that the children learn
nothing from this announcement. Although everyone knows the content
of the announcement, the father’s saying it makes it common knowledge
among them, so now they all know that everyone else knows it, etc. This
is the crucial difference between the two scenarios.



Comments (cont’d)
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To understand scenario 2, consider a few cases of k.

k = 1 Just one child has mud. That child is immediately able to answer i yes’,
since she has heard the father and doesn’t see any other child with mud.

k = 2 Say only the children a and b have mud. Everyone answers ’no’ the first
time. Now a thinks: since b answered ’no’ the first time, he must see
someone with mud. Well, the only person I can see with mud is b, so if
b can see someone else it must be me. So a answers ’yes’ the second time.
Child b reasons symmetrically about a and also answers ’yes’ the second
time round.

k = 3 Say only the children a, b and c have mud. Everyone answers ’no’ the
first two times. But now a thinks: if it was just b and c with mud, they
would have answered ’yes’ the second time, making the argument for k = 2
above. So there must be a third person with mud; since I can see only b and
c having mud, the third person must be me. So a answers ’yes’ the third
time. For symmetrical reasons, so do b and c.

And similarly for other cases of k.



The Modal Logic KT 45n

CS3234 — Logic and Formal Systems — Lecture 11 — 04/11/04Slide 31

We now generalise the modal logic KT 45. Instead of having just one 2,
it will have many, one for each agent i from a fixed set A = {1,2, . . . ,n}
of agents. We write those modal connectives as Ki (for each agent i ∈
A); the K is to emphasise the application to knowledge. We assume a
collection p, q, r, . . . of atomic formulas. The formula Ki p means that
agent i knows p; so, for example,

K1 p∧K1¬K2K1 p

means that agent 1 knows p, but knows that agent 2 doesn’t know he
knows it. We also have the modal connectives EG, where G is any subset
of A . The formula EG p means everyone in the group G knows p. If
G = {1,2,3, . . . ,n}, then EG p is equivalent to

K1 p∧K2p∧·· ·∧Kn p



Comments
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• One might think that Φ could not be more widely known than everyone knowing it, but this
is not the case. It could be, for example, that everyone knows Φ, but they might not know
that they all know it.

• If Φ is supposed to be a secret, it might be that you and your friend both know it, but your
friend does not know that you know it and you don’t know that your friend knows it.

• Thus, EGEGΦ is a state of knowledge even greater than EGΦ and EGEGEGΦ is greater still.

• We say that Φ is common knowledge among G, written CGΦ, if everyone knows Φ and
everyone knows that everyone knows it; and everyone knows that; and knows that, etc., i.e.
we may think of CGΦ as an infinite conjunction

EGΦ∧EGEGΦ∧EGEGEGΦ∧·· ·

• However, since our logics only have finite conjunctions, we cannot reduce CG to something
which is already in the logic. We have to express the infinite aspect of CG via its semantics
and retain it as an additional modal connective.

• Finally, DGΦ means the knowledge of Φ is distributed among the group G; although no-one
in G may know it, they would be able to work it out if they put their heads together and
combined the information distributed among them.



Some Valid Formulas in KT 45n
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The formula K holds for the connectives Ki, EG, CG and DG, i.e. we have
the corresponding formula schemes.

K1Φ∧Ki(Φ → Ψ) → KiΨ
EGΦ∧EG(Φ → Ψ) → EGΨ
CGΦ∧CG(Φ → Ψ) →CGΨ
DGΦ∧DG(Φ → Ψ) → DGΦ

This means that these different ’levels’ of knowledge are closed under
logical consequence. For example, if certain facts are common knowl-
edge and some other fact follows logically from them, then that fact is
also common knowledge.



Some Valid Formulas in KT 45n (cont’d)
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Observe that E , C and D are ’box-like’ connectives, in the sense that they
quantify universally over certain accessibility relations. That is to say,
we may define the relations REG , RDG and RCG in terms of the relations
Ri, as follows:

REG(x,y) iff Ri(x,y) for some i ∈ G
RDG(x,y) iff Ri(x,y) for all i ∈ G
RCG(x,y) iff Rk

EG
(x,y) for each k ≥ 1

It follows from this that EG, DG and CG satisfy the K formula with re-
spect to the accessibility relations REG , RDG and RCG , respectively.



Other Valid Formulas
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Since we have stipulated that the relations Ri are equivalence relations, the
following formulas are valid in KT 45n (for each agent i):

KiΦ → KiKiΦ positive introspection
¬Ki → Ki¬KiΦ negative introspection
KiΦ → Φ truth

These formulas also hold for DG, since RDG is also an equivalence rela-
tion, but these don’t automatically generalise for EG and CG. For example,
EGΦ → EGEGΦ is not valid; if it were valid, it would imply that common
knowledge was nothing more than knowledge by everybody. The scheme
¬EGΦ → EG¬EGΦ is also not valid. The failure of these formulas to be valid
can be traced to the fact that REG , is not necessarily an equivalence relation,
even though each Ri is an equivalence relation.

However, REG is reflexive, so EGΦ → Φ is valid, provided that G 6= /0 (if
G = 0, then EGΦ holds vacuously, even if Φ is false).

Since RCG , is an equivalence relation, the formulas T , 4 and 5 above do hold
for CG, although the third one still requires the condition that G 6= Φ.



Natural Deduction for KT 45n
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The proof system for KT 45 is easily extended to KT 45n (but for sim-
plicity, we omit reference to the connective D).

1. The dashed boxes now come in different ’flavours’ for different
modal connectives; we’ll indicate the modality in the top left cor-
ner of the dashed box.

2. The axioms T , 4 and 5 can be used for any Ki, whereas axioms 4
and 5 can be used for CG, but not for EG.

3. From CGΦ we may deduce Ek
GΦ, for any k (we call this rule CE);

or we could go directly to Ki1 · · ·KikΦ for any agents i1, . . . , ik. This
rule is called CK.

4. From EGΦ we may deduce KiΦ for any i ∈ G (called EKi). From
V

i∈G KiΦ we may deduce EGΦ (rule KE). Note that the proof
rule EKi is like a generalized and-elimination rule, whereas KE
behaves like an and-introduction rule.



Natural Deduction Rules for KT 45n
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Natural Deduction Rules for KT 45n (cont’d)
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Formalization of Wise Men Puzzle
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Let pi mean that man i has a red hat; so ¬p j means that man i has a white hat. Let Γ be the
set of formulas

{ C(p1 ∨ p2 ∨ p3),C(p1 → K2 p1), C(¬p1 → K2¬p1),C(p1 → K3 p1), C(¬p1 → K3¬p1),
C(p2 → K1 p2), C(¬p2 → K1¬p2),C(p2 → K3 p2), C(¬p2 → K3¬p2),
C(p3 → K1 p3), C(¬p3 → K1¬p3),C(p3 → K2 p3), C(¬p3 → K2¬p3) }

This corresponds to the initial set-up: it is common knowledge that one of the hats must be
red and that each man can see the colour of the other men’s hats. The announcement that the
first man doesn’t know the colour of his hat amounts to the formula

C(¬K1 p1 ∧¬K1¬p1)

and similarly for the second man. A naive attempt at formalising the wise-men problem might
go something like this: we simply prove

Γ, C(¬K1 p1 ∧¬K1¬p1), C(¬K2 p2 ∧¬K2¬p2) ` K3 p3,

i.e. if Γ is true and the announcements are made, then the third man knows his hat is red.
However, this fails to capture the fact that time passes between the announcements. The fact
that C¬K1 p1 is true after the first announcement does not mean it is true after some subsequent
announcement. For example, if someone announces p1, then Cp1 becomes true.



Correct Formalization
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The reason that this formalisation is incorrect, then, is that, although knowledge accrues with
time, lack of knowledge does not accrue with time. If I know Φ, then (assuming that Φ doesn’t
change) I will know it at the next time-point; but if I do not know Φ, it may be that I do know
it at the next time point, since I may acquire more knowledge.

To formalise the wise-men problem correctly, we need to break it into two entailments, one
corresponding to each announcement. When the first man announces he does not know the
colour of his hat, a certain positive formula Φ becomes common knowledge. Our informal
reasoning explained that all men could then rule out the state R W W which, given p2∨ p2∨ p3,
led them to the common knowledge of p2 ∨ p3. Thus, Φ is just p2 ∨ p3 and we need to prove
the entailments

Entailment 1: Γ, C(¬K1 p1 ∧¬K1¬p1) `C(p2 ∨ p3)

Entailment 2: Γ, C(p2 ∨ p3), C(¬K2 p2 ∧¬K2¬p2) ` K3 p3.

This method requires some careful thought: given an announcement of negative information
(such as a man declaring that he does not know what the colour of his hat is), we need to work
out what positive knowledge formula can be derived from this and such knowledge has to be
sufficient to allow us to proceed to the next round (= make even more progress towards solving
the puzzle).


