CS3234 — Tutorial 1 questions

- 1. From natural language to logic: Find propositional logic formulas expressing the following declarative sentences:
 - 1. If the barometer falls, then either will rain of it will snow.
 - 2. If Dick met Jane yesterday, they had a cup of coffee together, or they took a walk in the park.
 - 3. Today it will rain or shine, but not both.
- 2. Priorities: Insert as many brackets as possible in the following formulas
 - 1. $\neg p \land q \rightarrow r$; 2. $(p \rightarrow q) \land \neg (r \lor p \rightarrow q)$; 3. $p \lor q \rightarrow \neg p \land r$
- 3. Proofs: Find natural deduction proofs for the following sequents:
 - 1. $p \to q, r \to s \vdash p \lor r \to q \lor s$
 - $2. \vdash (p \land q) \rightarrow p$
 - 3. $p \vdash (p \rightarrow q) \rightarrow q$
 - $4. \vdash (p \rightarrow q) \lor (q \rightarrow p)$
 - 5. $\neg(\neg p \lor q) \vdash p$
 - $6. \vdash (p \rightarrow q) \lor (q \rightarrow r)$
 - 7. $\vdash (p \rightarrow q) \rightarrow ((\neg p \rightarrow q) \rightarrow q)$
 - 8. $p \to q, r \to s \vdash p \land r \to q \land s$
 - 9. $p \to (q \lor r), q \to s, r \to s \vdash p \to s$
 - 10. $(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$
 - 11. $q \rightarrow (p \rightarrow r), \neg r, q \vdash \neg p$
 - 12. $p \to q \land r \vdash (p \to q) \land (p \to r)$
 - 13. $\neg (p \land q) \vdash \neg p \lor \neg q$
 - 14. $p \to (q \lor r), \neg q, \neg r \vdash \neg p$
- **4. Proofs**: Let us introduce a new connective $\phi \leftrightarrow \psi$ as an abbreviation of $(\phi \to \psi) \land (\psi \to \phi)$. Design introduction and elimination rules for " \leftrightarrow " and show that they are derived rules if $\phi \leftrightarrow \psi$ is interpreted as $(\phi \to \psi) \land (\psi \to \phi)$.