National University of Singapore School of Computing CS3234 — Logic and Formal Systems Semester I, 2004/2005

Tutorial 3

1. Use the predicates

 $A(x,y): x ext{ admires } y$ $B(x,y): x ext{ attended } y$ $P(x): x ext{ is a professor}$ $S(x): x ext{ is a student}$ $L(x): x ext{ is a lecture}$

and the function constant

m: Mary

to translate the following into predicate logic:

- (a) Mary admires every professor.
- (b) Some professor admires Mary.
- (c) Mary admires herself.
- (d) No student attended every lecture.
- (e) No lecture was attended by every student.
- (f) No lecture was attended by any student.
- **2.** Consider the following formula, denoted by Φ :

$$\neg(\forall x ((\exists y P(x, y, z)) \land (\forall z P(x, y, z))))$$

- (a) Draw the parse tree of Φ .
- (b) Indicate the free and bound variables in that parse tree.
- (c) List all variables which occur free and bound therein.
- (d) Compute $\Phi[t/x]$, $\Phi[t/y]$, and $\Phi[t/z]$, where t equals the term g(f(g(y,y)),y). Is t free for x in Φ ? Is t free for y in Φ ? Is t free for y in Φ ? Is t free for z in Φ ?
- 3. Prove the following sequents in predicate logic, using natural deduction rules.
 - (a) $\forall x (P(x) \land Q(x)) \vdash \forall x P(x) \land \forall x Q(x)$
 - (b) $\exists x P(x) \lor \exists x Q(x) \vdash \exists x (P(x) \lor Q(x))$
 - (c) $\forall x \forall y P(x,y) \vdash \forall u \forall v P(u,v)$
 - (d) $\exists x \forall y P(x,y) \vdash \forall y \exists x P(x,y)$
 - (e) $P(a) \vdash \forall x (x = a \rightarrow P(x))$
 - (f) $\forall x P(x) \to S \vdash \exists y (P(y) \to S)$ (S is a predicate with 0 arguments)