CS3234 - Tutorial 4, Solutions

1.

$$\phi = \forall x \forall y \ Q(g(x,y), g(y,y), z)$$

Formula ϕ has the set of functions $\mathcal{F} = \{g\}$, the set of predicates $\mathcal{P} = \{Q\}$, and the set of variables $\{x, y, z\}$.

We define the model \mathcal{M} and the environment ℓ such that $\mathcal{M} \models_{\ell} \phi$.

- $A = \{a, b\}$
- $g^{\mathcal{M}}: A^2 \to A$, with g being the constant function equal to a:

$$g(x,y) = a$$
 for all $x, y \in A$

- $Q^{\mathcal{M}} \subseteq A^3$, with $Q^{\mathcal{M}} = \{(a, a, a)\}$
- The environment $\ell: \{x, y, z\} \to A$, as:

$$\ell(x) = \ell(y) = a$$
 and $\ell(z) = a$

So, $\mathcal{M} \models_{\ell} \phi$ since using the definition of $g^{\mathcal{M}}$, $Q^{\mathcal{M}}$, and the evaluation of the free variable z in the environment ℓ we have:

$$\phi = \forall x \forall y \ Q^{\mathcal{M}}(g^{\mathcal{M}}(x, y), g^{\mathcal{M}}(y, y), a) = \forall x \forall y \ Q^{\mathcal{M}}(a, a, a) = \forall x \forall y \ T$$

which is evaluated to T in the model \mathcal{M} and the environment ℓ .

Let \mathcal{M}' be the previously defined model \mathcal{M} and let us define the environment ℓ' :

$$\ell: \{x, y, z\} \to A \text{ as } \ell'(x) = \ell'(y) = a \text{ and } \ell'(z) = b$$

So, $\mathcal{M} \nvDash_{\ell'} \phi$ because

$$\phi = \forall x \forall y \ Q^{\mathcal{M}}(g^{\mathcal{M}}(x, y), g^{\mathcal{M}}(y, y), b) = \forall x \forall y \ Q^{\mathcal{M}}(a, a, b) = \forall x \forall y \ F$$

is evaluated to F in the model $\mathcal{M}' = \mathcal{M}$ and the environment ℓ'

$$\forall x P(x) \lor \forall x Q(x) \models \forall (P(x) \lor Q(x))$$

Let us consider a model \mathcal{M} such that $\mathcal{M} \models \forall x P(x) \lor \forall x Q(x)$. We want to show that $\mathcal{M} \models \forall (P(x) \lor Q(x))$.

We have the following proof:

$$\begin{array}{l} \boldsymbol{\mathcal{M}} \models \forall x P(x) \vee \forall x Q(x) \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models \varphi \vee \psi \\ \boldsymbol{\mathcal{M}} \models \forall x P(x) \text{ or } \boldsymbol{\mathcal{M}} \models \forall x Q(x) \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models \forall \varphi \\ \boldsymbol{(for all } \ell : var \to A, for all } a \in A, \, \boldsymbol{\mathcal{M}} \models_{\ell[x \to a]} P(x) \, \boldsymbol{)} \text{ or } \\ \boldsymbol{(for all } \ell : var \to A, for all } a \in A, \, \boldsymbol{\mathcal{M}} \models_{\ell[x \to a]} Q(x) \, \boldsymbol{)} \\ \boldsymbol{\mathbf{then}} \\ for all } \ell : var \to A, for all } a \in A, \, \boldsymbol{(\mathcal{M}} \models_{\ell[x \to a]} P(x) \text{ or } \boldsymbol{\mathcal{M}} \models_{\ell[x \to a]} Q(x) \, \boldsymbol{)} \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models_{\ell} \varphi \vee \psi \\ for all } \ell : var \to A, for all } a \in A, \, \boldsymbol{\mathcal{M}} \models_{\ell[x \to a]} P(x) \vee Q(x) \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models_{\ell} \forall \varphi \\ for all } \ell : var \to A, \, \boldsymbol{\mathcal{M}} \models_{\ell} \forall x (P(x) \vee Q(x)) \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models_{\ell} \forall x (P(x) \vee Q(x)) \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models_{\ell} \forall x (P(x) \vee Q(x)) \\ \boldsymbol{\mathbf{iff}} \\ \text{by definition of } \boldsymbol{\mathcal{M}} \models_{\ell} \forall x (P(x) \vee Q(x)) \\ \boldsymbol{\mathbf{M}} \models_{\ell} \forall x (P(x) \vee Q(x)) \\ \end{array}$$

So, in any model \mathcal{M} where $\forall x P(x) \lor \forall x Q(x)$ evaluates to true (that is $\mathcal{M} \models \forall x P(x) \lor \forall x Q(x)$) **then** also the formula $\forall x (P(x) \lor Q(x))$ evaluates to true $(\mathcal{M} \models \forall x (P(x) \lor Q(x)))$.

Hence, by the definition of semantic entailment, we conclude that:

$$\forall x P(x) \lor \forall x Q(x) \models \forall (P(x) \lor Q(x))$$

(a)
$$(\forall x \forall y (S(x,y) \rightarrow S(y,x))) \rightarrow (\forall \neg S(x,x))$$

The left-hand side of the formula resembles the symmetry property of equality $(x = y \rightarrow y = x)$. Based on this observation, we may have the following model, \mathcal{M} :

- $A = \mathbb{N}$ (the set of natural numbers)
- no function symbol ($\mathcal{F} = \emptyset$)
- $S^{\mathcal{M}} = =_{\mathbb{N}}$ (equality relation between natural numbers)

Using this model, $\forall x \forall y (x = y \rightarrow y = x)$ evaluates to true and $\forall x \neg (x = x)$ evaluates to false. Thus, the formula consisting the implication of these two is F.

So,
$$\mathcal{M} \nvDash (\forall x \forall y (S(x,y) \to S(y,x))) \to (\forall x \neg S(x,x))$$

(b)
$$\exists y ((\forall x P(x)) \rightarrow P(y)$$

1
$$\forall x P(x)$$
 assumption
2 $P(y)$ $\forall x \in 1$
3 $(\forall x P(x)) \rightarrow P(y)$ $\rightarrow i 1-2$
4 $\exists y ((\forall x P(x)) \rightarrow P(y))$ $\exists y i 3$

(c)
$$(\forall x (P(x) \to \exists y Q(y))) \to (\forall x \exists y (P(x) \to Q(y)))$$

1	$\forall x \ (P(x) \to \exists y Q(y))$	assumption
2	x_0	
3	$P(x_0) \to \exists y Q(y)$	∀ <i>x</i> e 1
4	$\neg P(x_0) \lor \exists y Q(y)$	(R)
5	$\neg P(x_0)$	assumption
6	$\neg P(x_0) \lor Q(y)$	∨i1 5
7	$P(x_0) \to Q(y)$	(R)
8	$\exists y \ (P(x_0) \to Q(y))$	∃ <i>y</i> i 7
9	$\exists y Q(y)$	assumption
10	$y_0, Q(y_0)$	assumption
11	$\neg P(x_0) \lor Q(y_0) $	∨i2 10
12	$P(x_0) \to Q(y_0) $	(R)
13	$\exists y \ (P(x_0) \to Q(y)) $	∃y i 12
14	$\exists y \ (P(x_0) \to Q(y))$	∃ <i>y</i> e 9,10-13
15	$\exists y \ (P(x_0) \to Q(y))$	∨e 4,5-8,9-14
16	$\forall x \; \exists y \; (P(x) \to Q(y))$	∀ <i>x</i> i 2-15
17	$(\forall x \ (P(x) \to \exists y \ Q(y))) \ \to \ (\forall x \ \exists y \ (P(x) \to Q(y)))$	→i 1-16

(d)
$$(\forall x \exists y (P(x) \to Q(y))) \to (\forall x (P(x) \to \exists y Q(y)))$$

1	$\forall x \; \exists y \; (P(x) \to Q(y))$	assumption
2	x_0	
3	$\exists y \ (P(x_0) \to Q(y))$	$\forall x \in 1$
4	$y_0, P(x_0) \rightarrow Q(y_0)$	assumption
5	$\neg P(x_0) \lor Q(y_0)$	(R)
6	$\neg P(x_0)$	assumption
7	$\neg P(x_0) \lor \exists y Q(y)$	∨i1 6
8	$P(x_0) \to \exists y Q(y)$	(R)
9	$Q(y_0)$	assumption
10	$\exists y Q(y)$	∃y i 9
11	$\neg P(x_0) \lor \exists y Q(y)$	√i2 10
12	$P(x_0) \to \exists y Q(y)$	(R)
13	$P(x_0) \to \exists y Q(y)$	∨e 5,6-8,9-12
14	$P(x_0) \to \exists y Q(y)$	∃ <i>y</i> e 3,4-13
15	$\forall x \ (P(x) \to \exists y Q(y))$	∀ <i>x</i> i 2-14
16	$(\forall x \exists y (P(x) \to Q(y))) \to (\forall x (P(x) \to \exists y Q(y)))$	→i 1-15

(e)
$$\forall x \forall y (S(x,y) \rightarrow (\exists z (S(x,z) \land S(z,y))))$$

Let's define a model \mathcal{M} in the following way:

- $A = \{a, b, c\}$
- no function symbol ($\mathcal{F} = \emptyset$)
- $S^{\mathcal{M}} = \{(a,b)\}$

Let's take an environment $\ell : var \to A$, with $\ell(x) = a$ and $\ell(y) = b$.

In these settings, S(x, y) (the left-hand-side of the implication in the formula) is true only when x = a and y = b.

In this case (when S(x,y) is true), there is no z such that S(x,z) = S(a,z) and S(z,y) = S(z,b) are both true.

(If
$$S(x,z) = S(a,z)$$
 is true, then $z = b$; but $S(b,a)$ is false, so $S(x,z) \wedge S(z,y)$ is false.)

So, the right-hand-side of the implication in the formula is false when the left-hand-side is true. Hence the implication is false.

From these, we deduce that $\mathcal{M} \nvDash_{\ell} \forall x \forall y (S(x,y) \to (\exists z (S(x,z) \land S(z,y)))).$

(f)
$$(\forall x \forall y (S(x,y) \rightarrow (x=y))) \rightarrow (\forall z \neg S(z,z))$$

Let's define the following model, \mathcal{M} :

- $A = \mathbb{N}$ (the set of natural numbers)
- no function symbol ($\mathcal{F} = \emptyset$)
- $S^{\mathcal{M}} = \mathbb{N}$ (equality relation between natural numbers)

Then, $\forall x \forall y ((x = y) \rightarrow (x = y)))$ evaluates to true, because the equality is symmetric and $\forall z \neg (z = z)$ evaluates to false, because the equality is also reflexive. So the implication of these two evaluates to false.

Hence,
$$\mathcal{M} \nvDash (\forall x \forall y (S(x,y) \to (x=y))) \to (\forall z \neg S(z,z))$$

(g)
$$(\forall x \exists y (S(x,y) \land ((S(x,y) \land S(y,z)) \rightarrow (x=y)))) \rightarrow (\neg \exists z \forall w (S(z,w)))$$

The left-hand side of the formula resembles the antisymmetry property of the \leq ordering on natural numbers, $(x \leq y \land y \leq x) \rightarrow x = y$.

We could choose the following model \mathcal{M} :

- $A = \mathbb{N}$ (the set of natural numbers)
- no function symbol ($\mathcal{F} = \emptyset$)
- $S^{\mathcal{M}} = \leq_{\mathbb{N}}$ (less-than or equal relation between natural numbers)

Thus, we have $\forall x \exists y (S(x,y) \land ((S(x,y) \land S(y,z)) \rightarrow (x=y)))$ evaluates to true (from axiom of foundation and antisymmetry for inequality of natural numbers) while $\neg \exists z \forall w (S(z,w))$ evaluates to false (because in fact there is a natural number smaller than any other, that is we may choose z=0). Hence the implication of these two evaluates to false in this model.

Hence,
$$\mathcal{M} \nvDash (\forall x \exists y (S(x,y) \land ((S(x,y) \land S(y,z)) \rightarrow (x=y)))) \rightarrow (\neg \exists z \forall w (S(z,w)))$$