CS3234 - Tutorial 7, Solutions

1.

1. AG($q \rightarrow \text{EG } r$). It's a CTL formula. The parse tree is:

The subformulas are: q, r, EG r, $q \rightarrow$ EG r, initial formula.

2. EF EG $p \rightarrow$ AF *r*. It's a CTL formula. The parse tree is:

The subformulas are: p, EG p, r, EF(EG p), AF r, initial formula.

- **3.** AF[$(r \cup q) \land (p \cup q)$]. It's not a CTL formula because there is no path quantifier for the until ("U") operators.
- **4.** $E[(AX q) \cup (\neg(\neg p) \lor (\top \land s))]$. It's a CTL formula. The parse tree is:

The subformulas are: $p, \neg p, \top, s, q, \neg(\neg p), \top \land s, AX q, (\neg(\neg p)) \lor (\top \land s)$, initial formula.

5. $\neg(AG q) \lor (EG q)$. It's a CTL formula. The parse tree is:

The subformulas are: q, AG q, \neg (AG q), EG q, initial formula.

6. AG $(p \rightarrow A[p \cup (\neg p \land A[\neg p \cup q])])$. it's a CTL formula. The parse tree is:

The subformulas are: $p, \neg p, q, A[(\neg p) \cup q], (\neg p) \lor (A[(\neg p) \cup q]), A[p \cup ((\neg p) \lor (A[(\neg p) \cup q]))], p \rightarrow A[p \cup ((\neg p) \lor (A[(\neg p) \cup q]))], initial formula.$

1. Unfolding the model \mathcal{M} , we get the following infinite tree:

2. Checking that $\mathcal{M}, s_0 \models \phi$ for the following ϕ 's:

- 1. $\neg p \rightarrow r$. YES, *r* is true in s_0 .
- 2. AF *t*. NO, because there is an infinite path along which *t* is always false $(s_0 \rightarrow s_0 \rightarrow s_0 \rightarrow ...)$
- 3. $\neg \text{EG } r$. NO, because there is an infinite path along which r is always true $(s_0 \rightarrow s_0 \rightarrow s_0 \rightarrow ...)$, so EG r is true.
- 4. $E[t \cup q]$. NO, because in s_0 , neither t nor q are true.
- 5. AF q. NO, because there is an infinite path along which q is always false.
- 6. EF q. YES, consider the path $s_0 \rightarrow s_3 \rightarrow s_2 \rightarrow s_1 \rightarrow \ldots$, where q is true in s_3 .
- 7. EG *r*. YES, consider the path $s_0 \rightarrow s_0 \rightarrow s_0 \rightarrow \dots$
- 8. AG $(r \lor q)$. YES, because every state in the graph has r or q true.
- **3.** Checking that $\mathcal{M}, s_2 \models \phi$, for the followings:
 - 1. $\neg p \rightarrow r$. YES, *r* is true in s_2 .
 - 2. AF *t*. YES, because unfolding from s_2 , there is one single path along which we find *t* true ($s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow s_1 \rightarrow ...$)
 - 3. $\neg \text{EG } r$. NO, because r is true in every state along the path $s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow s_1 \rightarrow \ldots$

2.

- 4. $E[t \cup q]$. YES, because q is true in s_2 .
- 5. AF q. YES, because q is true in s_2
- 6. EF q. YES, because q is true in s_2
- 7. EG *r*. YES, because *r* is true in every state along the path $s_2 \rightarrow s_1 \rightarrow s_2 \rightarrow s_1 \rightarrow \dots$
- 8. AG($r \lor q$). YES, because every state along the path $s_2 \to s_1 \to s_2 \to s_1 \to \dots$ has *r* or *q* true.

3.

- We start first by unfolding the model \mathcal{M} :

1. Checking that $\mathcal{M}, s_0 \models \phi$, for the followings:

- 1. AF q. YES, because q is true in s_0
- 2. AG(EF($p \lor r$)). YES, because every state in the graph has p or r true.
- 3. EX(EX *r*). YES, because along the path $s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_1 \rightarrow \ldots$ we find the second s_1 state where *r* is true.
- 4. AG(AF q). NO, because the property AF q should hold in every state (because of AG), and we have an infinite path $s_1 \rightarrow s_1 \rightarrow s_1 \rightarrow \ldots$ along which q is false.
- **2.** Checking that $\mathcal{M}, s_2 \models \phi$, for the followings:
 - 1. AF q. YES, because from s_2 you can advance to s_0 or s_3 only, and in both these states you have q true.
 - 2. AG(EF $(p \lor r)$). YES, because every state in the graph has p or r true.

- 3. EX(EX *r*). YES, because along the path $s_2 \rightarrow s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow \ldots$ we find the s_1 state (first one) where *r* is true.
- 4. AG(AF q). NO, because the property AF q should hold in every state (because of AG), and we have an infinite path $s_1 \rightarrow s_1 \rightarrow s_1 \rightarrow \dots$ along which q is false.

4.

- Unfolding the given model, we get the following infinite tree:

- Checking the truth value of the formula $\phi = AG(p \rightarrow A[p \cup (\neg p \land A[\neg p \cup q])])$ for the model and each state s_0, s_1, s_2, s_3, s_4 :
 - $\mathcal{M}, s_0 \models \phi$. NO, consider the following path $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_1 \rightarrow s_3 \rightarrow \dots$
 - $\mathcal{M}, s_1 \models \phi$. NO, consider the following path $s_1 \rightarrow s_3 \rightarrow s_1 \rightarrow s_3 \rightarrow \ldots$
 - $\mathcal{M}, s_2 \models \phi$. NO, consider the following path $s_2 \rightarrow s_1 \rightarrow s_3 \rightarrow s_1 \rightarrow s_3 \rightarrow \cdots$
 - $\mathcal{M}, s_3 \models \phi$. NO, consider the following path $s_3 \rightarrow s_1 \rightarrow s_3 \rightarrow s_1 \rightarrow \dots$
 - $\mathcal{M}, s_4 \models \phi$. YES, *p* is false in s_4

5.

A[(¬s ∧ ¬t) U (¬s ∧ ¬t ∧ p ∧ (EF s ∨ EF t)]
 AG(p → AG¬q)
 AG((r → A[¬p U q]) ∧ (q → A[¬p U r]))

4. "on every path transitions to states satisfying *p* occur at most twice": $(\neg p \land AX A[\neg p U (p \land AX A[\neg p U (p \land AG \neg p)])]) \lor$ $(\neg p \land AXA[\neg p U (p \land AG \neg p)]) \lor AG \neg p$

6.

1. $\mathcal{M} \models EF \phi$ and $\mathcal{M} \nvDash EG \phi$

- **2.** EF $\phi \lor$ EF $\psi \equiv$ EF($\phi \lor \psi$)
- **3.** $\mathcal{M} \nvDash AF \phi \lor AF \psi$ and $\mathcal{M} \models AF(\phi \lor \psi)$

- **4.** AF $\neg \phi \equiv \neg EG \phi$
- **5.** $\mathcal{M} \models EF \neg \phi$ and $\mathcal{M} \nvDash \neg AF \phi$

6. $\mathcal{M} \nvDash A[\phi_1 \cup A[\phi_2 \cup \phi_3]] \text{ and } \mathcal{M} \vDash A[A[\phi_1 \cup \phi_2] \cup \phi_3]$ $(\bigcirc_1) \qquad (\bigcirc_2) \qquad (\bigcirc_2) \qquad (\bigcirc_3)$ $s_0 \qquad s_1 \qquad s_0 \qquad s_1 \qquad s_2$ **7.** $\top \equiv AG \phi \rightarrow EG \phi$

7.

1. Let us consider a model \mathcal{M} for $\neg AF \phi$ We have the following equivalences:

 $\mathcal{M}, s_0 \models \neg \mathsf{AF} \phi$

iff

is not true that for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \phi$ iff

there is a path $s_0 \to s_1 \to s_2 \to \dots$ where is not true that there exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \phi$

iff

there is a path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ where for all $i \in \mathbb{N}$ is not true that $\mathcal{M}, s_i \models \phi$ **iff**

there is a path $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ where for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \phi$ **iff** $\mathcal{M}, s_0 \models EG \neg \phi$

- $\mathcal{M}, \mathfrak{s}_0 \models \mathrm{LO} \ \psi$
- Let us consider a model *M* for ¬EF φ We have the following equivalences:

```
\begin{split} \mathcal{M}, s_0 &\models \neg \text{EF } \phi \\ \textbf{iff} \\ \text{is not true that exists a path } s_0 \to s_1 \to s_2 \dots \text{ such that exists } i \in \mathbb{N} \text{ such that} \\ \mathcal{M}, s_i &\models \phi \\ \textbf{iff} \\ \text{for all paths } s_0 \to s_1 \to s_2 \dots \text{ is not true that exists } i \in \mathbb{N} \text{ such that } \mathcal{M}, s_i \models \phi \\ \textbf{iff} \\ \text{for all paths } s_0 \to s_1 \to s_2 \dots \text{ and for all } i \in \mathbb{N} \text{ is not true that } \mathcal{M}, s_i \models \phi \\ \textbf{iff} \\ \text{for all paths } s_0 \to s_1 \to s_2 \dots \text{ and for all } i \in \mathbb{N}, \mathcal{M}, s_i \models \neg \phi \\ \textbf{iff} \\ \text{for all paths } s_0 \to s_1 \to s_2 \dots \text{ and for all } i \in \mathbb{N}, \mathcal{M}, s_i \models \neg \phi \\ \textbf{iff} \\ \mathcal{M}, s_0 \models AG \neg \phi \end{split}
```

Let us consider a model *M* for ¬AX φ
 We have the following equivalences:

 $\mathcal{M}, s_0 \models \neg \mathsf{AX} \phi$ **iff** is not true that for all paths $s_0 \to s_1 \to s_2 \dots, \mathcal{M}, s_1 \models \phi$ **iff** exists a path $s_0 \to s_1 \to s_2 \dots$ such that is not true $\mathcal{M}, s_1 \models \phi$ **iff** exists a path $s_0 \to s_1 \to s_2 \dots$ such that $\mathcal{M}, s_1 \models \neg \phi$ **iff** $\mathcal{M}, s_0 \models \mathsf{EX} \neg \phi$

4. Let us consider a model *M* for A[⊤ U φ] We have the following equivalences:

 $\mathcal{M}, s_0 \models \mathbf{A}[\top \mathbf{U} \phi]$ **iff** for all paths $s_0 \to s_1 \to s_2 \dots$, exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \phi$ and for all $j < i, \mathcal{M}, s_j \models \top$ **iff** for all paths $s_0 \to s_1 \to s_2 \dots$, exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \phi$ **iff** $\mathcal{M}, s_0 \models \mathbf{AF}\phi$

 Let us consider a model *M* for E[⊤Uφ] We have the following equivalences:

```
\mathcal{M}, s_0 \models \mathbb{E}[\top \mathbb{U} \phi]
iff
exists a path s_0 \to s_1 \to s_2 \dots such that exists i \in \mathbb{N} such that \mathcal{M}, s_i \models \phi and for all j < i, \mathcal{M}, s_j \models \top
iff
exists a path s_0 \to s_1 \to s_2 \dots such that exists i \in \mathbb{N} such that \mathcal{M}, s_i \models \phi
iff
```

 $\mathcal{M}, s_0 \models \mathrm{EF} \phi$

6. Let us consider a model \mathcal{M} for $\neg(E[\neg \psi U (\neg \phi \land \neg \psi)] \lor EG\neg \psi)$ We have the following equivalences:

$$\mathcal{M}, s_0 \models \neg (E[\neg \psi U (\neg \phi \land \neg \psi)] \lor EG \neg \psi)$$
iff

is not true that

exists a path $s_0 \to s_1 \to s_2 \dots$ such that exists $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \phi \land \neg \psi$ and for all $j < i, \mathcal{M}, s_j \models \neg \psi$

or

exists a path $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ such that for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \psi$

iff

is not true that exists a path $s_0 \to s_1 \to s_2...$ such that exists $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \phi \land \neg \psi$ and for all $j < i, \mathcal{M}, s_j \models \neg \psi$

and

is not true that exists a path $s_0 \to s_1 \to s_2 \dots$ such that for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \psi$

iff

for all paths $s_0 \to s_1 \to s_2...$ is not true that exists $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \phi \land \neg \psi$ and for all $j < i, \mathcal{M}, s_j \models \neg \psi$

and

for all paths $s_0 \to s_1 \to s_2 \dots$ is not that for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \neg \psi$

iff

for all paths $s_0 \to s_1 \to s_2...$ for all $i \in \mathbb{N}$ is not true that $\mathcal{M}, s_i \models \neg \phi \land \neg \psi$ and for all $j < i, \mathcal{M}, s_i \models \neg \psi$

and

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i \in \mathbb{N}$ such that is not true $\mathcal{M}, s_i \models \neg \Psi$

iff

for all paths $s_0 \to s_1 \to s_2...$ for all $i \in \mathbb{N}$ is not true that $\mathcal{M}, s_i \models \neg \phi$ and $\mathcal{M}, s_i \models \neg \psi$ and for all $j < i, \mathcal{M}, s_j \models \neg \psi$

and

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \psi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \phi$ or $\mathcal{M}, s_i \models \psi$ or is not true that for all $j < i, \mathcal{M}, s_j \models \neg \psi$

and

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \psi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \phi$ or $\mathcal{M}, s_i \models \psi$ or exists j < i such that is not true $\mathcal{M}, s_i \models \neg \psi$

and

for all paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \psi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \phi$ or $\mathcal{M}, s_i \models \psi$ or exists j < i such that $\mathcal{M}, s_j \models \psi$

and

for all paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \psi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \phi \lor \psi$ or exists j < i such that $\mathcal{M}, s_j \models \psi$

and

for all paths $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \psi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ for all $i \in \mathbb{N}$, $\mathcal{M}, s_i \models \phi \lor \psi$ or exists j < i such that $\mathcal{M}, s_i \models \psi$

and

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i_0 \in \mathbb{N}$ such that $\mathcal{M}, s_{i_0} \models \psi$ and for all $j < i_0, \mathcal{M}, s_j \models \neg \psi$ (i_0 is the smallest *i* with the property $\mathcal{M}, s_i \models \psi$)

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i_0 \in \mathbb{N}$ such that $\mathcal{M}, s_{i_0} \models \psi$ and for all $j < i_0 \mathcal{M}, s_j \models \neg \psi$ and $\mathcal{M}, s_j \models \phi \lor \psi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i_0 \in \mathbb{N}$ such that $\mathcal{M}, s_{i_0} \models \psi$ and for all $j < i_0 \mathcal{M}, s_j \models \neg \psi \land (\phi \lor \psi)$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i_0 \in \mathbb{N}$ such that $\mathcal{M}, s_{i_0} \models \psi$ and for all $j < i_0 \mathcal{M}, s_j \models \neg \psi \land \phi$

iff

for all paths $s_0 \to s_1 \to s_2 \dots$ exists $i \in \mathbb{N}$ such that $\mathcal{M}, s_i \models \psi$ and for all $j < i \mathcal{M}, s_j \models \phi$

iff

 $\mathcal{M}, s_0 \models \mathsf{A}[\phi \cup \psi]$