National University of Singapore School of Computing CS3234 — Logic and Formal Systems Semester I, 2004/2005

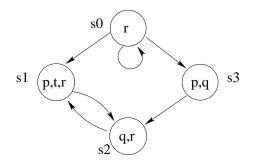
Tutorial 6

- 1. Syntax: For each of the following strings, state if it is a well-formed CTL formula or not; for the well-formed formulas draw the parse tree and list all subformulas.
 - 1 AG $(q \to \text{EG } r)$ 2 EF EG $p \to \text{AF } r$ 3 AF $[(r \cup q) \land (p \cup r)]$ 4 E $[(\text{AX } q) \cup (\neg(\neg p) \lor (\top \land s))]$ 5 $\neg(\text{AG } q) \lor (\text{EG } q)$ 6 AG $(p \to \text{A}[p \cup (\neg p \land \text{A}[\neg p \cup q])])$

2. Semantics-1:

Consider the system \mathcal{M} in the figure.

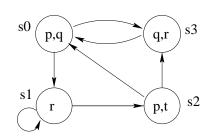
- 1. Unfold it to get an infinite tree;
- 2. Check $\mathcal{M}, s_0 \models \phi$ for the following formulas:
 - 1. $\neg p \rightarrow r$
 - 2. Af t
 - 3. $\neg \text{EG } r$
 - 4. $E(t \cup q)$
 - 5. AF q
 - 6. EF q
 - 7. EG r
 - 8. $AG(r \lor q)$
- 3. Repeat 2, but for the state s2



3. Semantics-2:

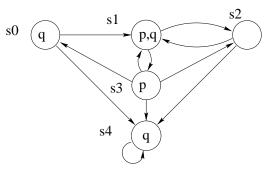
Consider the system \mathcal{M} in the figure.

- 1. Check $\mathcal{M}, s_0 \models \phi$ for the following formulas:
 - 1. AF q
 - 2. $AG(EF(p \lor r)$
 - 3. ex(ex r)
 - 4. AG(AF q)
- 2. Repeat 1, but for state s2



4. Semantics-3:

Find the truth value of the formula $\phi =$ $AG(p \rightarrow A[p \cup (\neg p \land A[\neg p \cup q])])$ for the model described in the figure and each state s0, s1, s2, s3 and s4.



5. Specification: Write CTL formulas for:

- 1. "p precedes s and t on all computation paths"
- 2. "always after p, q is never true"
- 3. "between the events q and r, p is never true"
- 4. "transitions to states satisfying p occur at most twice"
- **6.** Equivalent formulas-1: Which of the following pairs of CTL formulas are equivalent? (When not, describe a model for one which is not a model for the other.)
 - 1 EF ϕ and EG ϕ

- 2 EF $\phi \vee$ EF ψ and EF $(\phi \vee \psi)$
- 3 Af $\phi \lor$ Af ψ and Af $(\phi \lor \psi)$ 4 Af $\neg \phi$ and \neg EG ϕ
- 5 EF $\neg \phi$ and \neg AF ϕ
- 6 A[ϕ_1 U A[ϕ_2 U ϕ_3]] and A[A[ϕ_1 U ϕ_2] U ϕ_3]
- 7 \top and AG $\phi \to EG \phi$ 8 \top and EG $\phi \to AG \phi$
- 7. Equivalent formulas-2: Prove that the following equivalences hold.
 - 1 $\neg AF \phi \equiv EG \neg \phi$
- 2 $\neg \text{EF } \phi \equiv \text{AG } \neg \phi$

- $3 \neg AX \phi \equiv EX \neg \phi \qquad \qquad 4 AF \phi \equiv A[\top U \phi]$ $5 EF \phi \equiv E[\top U \phi] \qquad \qquad 6 A[\phi U \psi] \equiv \neg(E[\neg \psi U (\neg \phi \land \neg \psi)] \lor EG \neg \psi)$