
CS3234 - Tutorial 8, Solutions

1.
Applying the model checking algorithm to check properties of safety, liveness and
non-strict sequencing for the first mutual exclusion model:

(a) φ1
� AG � � c1 � c2 �
- SAT

�
AG � � c1 � c2 ��� �

� SAT
� � EF ��� � c1 � c2 ��� �

� SAT
� � EF

�
c1 � c2 ��� �

� S � SAT
�
EF

�
c1 � c2 ��� �

� S � SAT
�
E �
	 U

�
c1 � c2 ���
� relation (1)

- SAT
�
E �
	 U

�
c1 � c2 ���
� �

W � SAT
� 	 � � S

X � S
Y � SAT

�
c1 � c2 � � SAT

�
c1 ��� SAT

�
c2 � ��� s2 � s4 ��� � s7 � s6 � � /0

step1 X � Y � /0
Y � Y � �

W � � s � exists s � such that s � s � and s ��� Y ���� /0 � �
S � /0 � � /0

step2 STOP because X � Y � /0
So, SAT

�
E �
	 U

�
c1 � c2 ���
� � /0

- coming back to relation (1), we get:
SAT

�
AG � � c1 � c2 ��� � S � /0 � S.

(b) φ2
� AG

�
t1 � AF c1 �

- SAT
�
AG

�
t1 � AF c1 ��� �

� SAT
� � EF � � t1 � AF c1 ��� �

� S � SAT
�
EF � � t1 � AF c1 ��� �

� S � SAT
�
E �
	 U

� � � t1 � AF c1 �����
� �
� S � SATEU

� 	 � � � t1 � AF c1 ��� relation (1)

- SATEU
� 	 � � � t1 � AF c1 ��� �

W � SAT
� 	 � � S

X � S
Y � SAT

� � � t1 � AF c1 ��� �
� S � SAT

�
t1 � AF c1 � �

� S � SAT
� � t1 � AF c1 � �

� S � �
SAT

� � t1 � � SAT
�
AF c1 ��� �

� S � ���
S � SAT

�
t1 ��� � SATAF

�
c1 ��� �

� S � ���
S � � s1 � s3 � s7 ��� � SATAF

�
c1 ��� �

� S � � � s0 � s2 � s4 � s5 � s6 � � SATAF
�
c1 ��� �

relation (2)
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- SATAF
�
c1 � �

X � S
Y � SAT

�
c1 � ��� s2 � s4 �

step1 X � Y � � s2 � s4 �
Y � Y � � s � for all s � with s � s � we have s � � Y � �
� � s2 � s4 � � /0 � � s2 � s4 �

step2 STOP because X � Y ��� s2 � s4 �
So, SATAF

�
c1 � ��� s2 � s4 �

- coming back to relation (2), we have:
X � S
Y � S � � � s0 � s2 � s4 � s5 � s6 � � � s2 � s4 ��� � S � � s0 � s2 � s4 � s5 � s6 � ���� s1 � s3 � s7 �
step1 X � Y � � s1 � s3 � s7 �

Y �
��� s1 � s3 � s7 � � �

S � � s � exists s � such that s � s � and s ��� Y � ���� s1 � s3 � s7 � � �
S � � s0 � s1 � s3 � s5 � s6 � s7 ��� ��� s0 � s1 � s3 � s5 � s6 � s7 �

step2 X � Y � � s0 � s1 � s3 � s5 � s6 � s7 �
Y �
� � s0 � s1 � s3 � s5 � s6 � s7 � � �

S � � s � exists s � s � t � s � s � and s � � Y � ���� s0 � s1 � s3 � s5 � s6 � s7 � � �
S � � s0 � s1 � s2 � s3 � s4 � s5 � s6 � s7 ��� � S

step3 X � Y � S
Y � S � �

S � � s � exists s � such that s � s � and s � � Y � � S
step4 STOP because X � Y � S
So, SATEU

� 	 � � � t1 � AF c1 ��� � S

- coming back to relation (1) we have:
SAT φ2

� S � SATEU
� 	 � � � t1 � AF c1 ��� � S � S � /0

SAT φ2
� /0

(3) φ3
� AG

�
n1 � EX t1 �

- SAT
�
AG

�
n1 � EX t1 ��� �

� SAT
� � EF � � n1 � EX t1 ��� �

� S � SAT
�
EF � � n1 � EX t1 ��� �

� S � SAT
�
E �
	 U

� � � n1 � EX t1 �����
� �
� S � SATEU

� 	 � � � n1 � EX t1 ��� relation (1)

- SATEU
� 	 � � � n1 � EX t1 ��� �

W � SAT
� 	 � � S

X � S
Y � SAT

� � � n1 � EX t1 ��� �
� S � SAT

�
n1 � EX t1 � �

� S � SAT
� � n1 � EX t1 � �

� S � �
SAT

� � n1 � � SAT
�
EX t1 ��� �

� S � ���
S � SAT

�
n1 ��� � SATEX

�
t1 ��� �
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� S � ���
S � � s0 � s5 � s6 ��� � SATEX

�
t1 ��� �

� S � � � s1 � s2 � s3 � s4 � s7 � � SATEX
�
t1 ��� relation (2)

- SATEX
�
t1 � �

X � SAT
�
t1 � � � s1 � s3 � s7 �

Y ��� s � S � s � s � for some s � � X � �� � s0 � s1 � s3 � s5 � s6 � s7 �
So, SATEX

�
t1 � ��� s0 � s1 � s3 � s5 � s6 � s7 �

- coming back to relation (2), we have:
X � S
Y � S � � � s0 � s2 � s4 � s5 � s6 � � � s0 � s1 � s3 � s5 � s6 � s7 ���� S � � s0 � s1 � s2 � s3 � s4 � s5 � s6 � s7 � � /0
step1 X � Y � /0

Y �
� /0 � �

S � � s � exists s � such that s � s � and s � � Y � �� /0 � �
S � /0 � � /0

step2 STOP because X � Y � /0
So, SATEU

� 	 � � � n1 � EX t1 ��� � /0
- coming back to relation (1) we have:

SAT φ3
� S � SATEU

� 	 � � � n1 � EX t1 ��� � S � /0 � S
SAT φ3

� S

(4) φ4
� EF

�
c1 � E � c1 U

� � c1 � E � � c2 U c1 �
���
� � EF ψ

- SATφ4
�

� SAT
�
E �
	 U ψ �
� �

� SATEU
� 	 � ψ �

W � SAT
� 	 � � S

X � S
Y � SAT

�
c1 � E � c1 U

� � c1 � E � � c2 U c1 �
���
� �
� SAT

�
c1 ��� SAT

�
E � c1 U

� � c1 � E � � c2 U c1 �
���
� �
� � s2 � s4 � � SAT

�
E � c1 U

� � c1 � E � � c2 U c1 �
���
� �
� � s2 � s4 � � SATEU

�
c1 � � � c1 � E � � c2 U c1 �
��� relation (1)

- SATEU
�
c1 � � � c1 � E � � c2 U c1 �
��� �

W � SAT
�
c1 � ��� s2 � s4 �

X � S
Y � SAT

� � c1 � E � � c2 U c1 �
� �
� SAT

� � c1 � � SAT
�
E � � c2 U c1 �
� �

� �
S � SAT

�
c1 ��� � SAT

�
E � � c2 U c1 �
� �

� � s0 � s1 � s3 � s5 � s6 � s7 � � SAT
�
E � � c2 U c1 �
� �

� � s0 � s1 � s3 � s5 � s6 � s7 � � SATEU
� � c2 � c1 � relation (2)

- SATEU
� � c2 � c1 � �

W � SAT
� � c2 � � S � SAT

�
c2 � ��� s0 � s1 � s2 � s3 � s4 � s5 �

X � S

3



Y � SAT
�
c1 � ��� s2 � s4 �

step1 X � Y � � s2 � s4 �
Y � Y � � � s0 � s1 � s2 � s3 � s4 � s5 ��� � s1 � s2 � s3 ���� � s2 � s4 � � � s1 � s2 � s3 � � � s1 � s2 � s3 � s4 �

step2 X � Y � � s1 � s2 � s3 � s4 �
Y � Y � � � s0 � s1 � s2 � s3 � s4 � s5 ��� � s0 � s1 � s2 � s3 � s5 � s7 ��� �
� � s1 � s2 � s3 � s4 � � � s0 � s1 � s2 � s3 � s5 � �
� � s0 � s1 � s2 � s3 � s4 � s5 �

step3 X � Y � � s0 � s1 � s2 � s3 � s4 � s5 �
Y ��� s0 � s1 � s2 � s3 � s4 � s5 � � � s0 � s1 � s2 � s3 � s4 � s5 � �
� � s0 � s1 � s2 � s3 � s4 � s5 �

step4 STOP because X � Y ��� s0 � s1 � s2 � s3 � s4 � s5 �
So, SATEU

� � c2 � c1 � � � s0 � s1 � s2 � s3 � s4 � s5 �
- coming back to relation (2), we have:

W ��� s2 � s4 �
X � S
Y ��� s0 � s1 � s3 � s5 � s6 � s7 � � � s0 � s1 � s2 � s3 � s4 � s5 � �

� � s0 � s1 � s3 � s5 �
step1 X � Y � � s0 � s1 � s3 � s5 �

Y ��� s0 � s1 � s3 � s5 � � � � s2 � s4 � � � s0 � s1 � s2 � s4 � s5 � s6 � s7 ��� �
� � s0 � s1 � s3 � s5 � � � s2 � s4 � �
� � s0 � s1 � s2 � s3 � s4 � s5 �

step2 X � Y � � s0 � s1 � s2 � s3 � s4 � s5 �
Y ��� s0 � s1 � s2 � s3 � s4 � s5 �

step3 STOP because X � Y ��� s0 � s1 � s2 � s3 � s4 � s5 �
So, SATEU

�
c1 � � � c1 � E � � c2 U c1 �
��� ��� s0 � s1 � s2 � s3 � s4 � s5 �

- coming back at relation (1). we get:
SATφ4

�
W � SAT

� 	 � � S
X � S
Y ��� s2 � s4 � � SATEU

�
c1 � � � c1 � E � � c2 U c1 �
��� �

� � s2 � s4 � � � s0 � s1 � s2 � s3 � s4 � s5 �� � s2 � s4 �
step1 X � Y � � s2 � s4 �

Y � Y � �
S � � s1 � s2 � s3 ��� �

� � s2 � s4 � � � s1 � s2 � s3 � �
� � s1 � s2 � s3 � s4 �

step2 X � Y � � s1 � s2 � s3 � s4 �
Y ��� s1 � s2 � s3 � s4 � � �

S � � s0 � s1 � s2 � s3 � s5 � s7 ��� �
� � s1 � s2 � s3 � s4 � � � s0 � s1 � s2 � s3 � s5 � s7 � �
� � s0 � s1 � s2 � s3 � s4 � s5 � s7 �

step3 X � Y � � s0 � s1 � s2 � s3 � s4 � s5 � s7 �
Y � � s0 � s1 � s2 � s3 � s4 � s5 � s7 � � �

S � � s0 � s1 � s2 � s3 � s4 � s5 � s6 � s7 � �
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� � s0 � s1 � s2 � s3 � s4 � s5 � s7 � � S �
� S

step4 X � Y � S
Y � S � �

S � S � � S
step5 STOP because X � Y � S
So, SATφ4

� S

2. and 3.
Similar reasoning to the first exercise.

4.
MODULE main
VAR

p : boolean;
q : boolean;
state : {s0, s1, s2, s3, s4};

ASSIGN
p := case

(state = s0) : 0;
(state = s1) : 1;
(state = s2) : 0;
(state = s3) : 1;
(state = s4) : 0;
1 : {0, 1};
esac;

q : = case
(state = s0) : 1;
(state = s1) : 1;
(state = s2) : 0;
(state = s3) : 0;
(state = s4) : 1;
1 : {0, 1};
esac;

init(state) := s0;
next(state) := case

(state = s0) : {s1, s4};
(state = s1) : {s2, s3};
(state = s2) : {s1, s4};
(state = s3) : {s0, s1, s2, s4};
(state = s4) : s4;
1 : {s0, s1, s2, s3, s4};

esac;

SPEC
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AG (p -> A [p U (!p & A [!p U q])])

You may change the initial state to be one of s1, s2, s3, s4 to establish its truth
value for the given model and chosen initial state.

5.

- If we analyze the SMV program, we notice that there are two instances
of the same process, counter cell, expressing the behavior of bit0 and
bit1. Thus, we would have two models (automaton), each for one bit (bit0,
bit1).When building the models, we need to extract information about the
states, transitions and the labeling function (values of variables in each state).
Noting that:

- for both models corresponding to bit0 and bit1, there are three vari-
ables (value, carry in, carry out).

- the carry in value for the bit0 model is always 1, thus the model has
only two states (depending if value is 0 or 1). (carry out is calculated
from values of value and carry in).

- the model for bit1 has 4 states, since in this case carry in is not
anymore a constant.

- with v 0, ci 0, co 0 we denote value, carry in, carry out for
bit0 and with v 1, ci 1, co 1we denote value, carry in, carry out
for bit1.

- For bit0 we have the model:

ci_0 = 1

co_0 = 0

v_0 = 0
ci_0 = 1

co_0 = 1

v_0 = 1

- For bit1 we have the model:
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ci_0 = 1

co_0 = 0

v_0 = 0
ci_0 = 1

co_0 = 1

v_0 = 1

v_0 = 0

ci_0 = 0

co_0 = 0

v_0 = 1

ci_0 = 0

co_0 = 0

- Combining both models, synchronously, we get:

ci_0 = 1

v_0 = 0

co_1 =0

co_0 = 0
ci_1 = 0

v_1 = 0

v_0 = 1

ci_0 = 1

co_0 = 1
ci_1 = 1

v_1 = 0
co_1 =0

v_0 = 1 v_1 = 0

ci_0 = 1 ci_0 = 1

ci_1 = 1
co_0 = 1 co_0 = 0

ci_0 = 0

v_1 = 1v_1 = 1
co_1 =0co_1 = 1

7



6.

We have to prove:
AF φ � µ Z � φ � AX Z

where:

Y � � p � p � T � p
� � φ �

G
�
Z � � � p � p � T � � for all s � p � s � s � Z � �

Let us denote F : 2T � � 2T such that:

F
�
Z � � Y � G

�
Z �

We have to prove that:

(1) F is monotonic

(2) F is continuous

(3) the least fixed point of F is the set of positions in the tree T where the
formula AF φ is true.

(1) F is monotonic

Let us take Z1 � Z2 � 2T two sets of positions in T, such that

Z1 � Z2

(a) We prove first that G
�
Z1 ��� G

�
Z2 �

Let us take p � G
�
Z1 �

iff p � T � � for all s � p � s � s � Z1 �
since Z1 � Z2

then p � T � � for all s � p � s � s � Z2 �
iff p � G

�
Z2 �

So, if p � G
�
Z1 � then p � G

�
Z2 � .

That is G
�
Z1 ��� G

�
Z2 � .

Now we have:

F
�
Z1 � � Y � G

�
Z1 ��� Y � G

�
Z2 � � F

�
Z2 �

(since if Z1 � Z2 then G
�
Z1 ��� G

�
Z2 � , so Y � G

�
Z1 ��� Y � G

�
Z2 � )

Hence, F
�
Z1 ��� F

�
Z2 � , so F is monotone.

(2) F is continuous.

Let us take an increasing sequence Z0 � Z1 � � � �
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We prove first that G
� � i Zi � � � i G

�
Zi �

Let us take p � G
� � i Zi �

iff p � T and for all s � p � s, s � � i Zi

iff p � T and for all s � p � s, exists is such that s � Zis

let us take ip
� maxp � s is. Since Z0 � Z1 � � � � , then for all s � p � s, we have

s � Zis � Zip (because is
�

ip, so Zis � Zip).

then p � T and for all s � p � s, exists ip such that s � Zip

then exists ip ��� such that p � G
�
Zip �

iff p � � i G
�
Zi �

So, we have G
� � i Zi ��� � i G

�
Zi � .

The other inclusion is proved based on the property (a) from previous
point:

Since for all i ��� we have Zi � � iZi then, for all i ��� we have
G
�
Zi ��� G

� � iZi � .
Hence � iG

�
Zi ��� G

� � iZi � .
Finally, we can conclude that G

� � i Zi � � � i G
�
Zi � .

Now, the proof for F continuous is obvious:

� i F
�
Zi � � � i

�
Y � G

�
Zi ��� � �

Y � G
�
Z0 ��� � �

Y � G
�
Z1 ��� � � � �

�
Y � �

G
�
Z0 � � G

�
Z1 � � � � � � � Y � � � i G

�
Zi ��� � Y � G

� � iZi � � F
� � iZi �

Hence. F is also continuous.

From (1) and (2) we deduce that F has a least fixed point.

(3) We denote by
SAF φ

� � p � p � T � p
� � AF φ �

(the set of positions in T where AF φ holds).

(3.1) First we show that SAF φ is a fixed point of F . That is we have to prove that

F
�
SAF φ � � SAF φ

” � ” Let us take p � F
�
SAF φ �

that is p � Y � G
�
SAF φ � .

if p � Y then p � T and p
� � φ, then p

� � AF φ, then p � SAF φ

if p � G
�
SAF φ �

then p � T, and for all s � p � s, we have s � SAF φ
then p � T, and for all s � p � s, s

� � AF φ
then p � T, and for all sk

0 � p � sk
0, and for any path sk

0 � sk
1 � sk

2 � � � �
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exists i
�
k � � � such that sk

i
�
k �
� � φ

then p � T, and for all paths p � sk
0 � sk

1 � sk
2 � � � � exists i

�
k � ���

such that sk
i

�
k �
� � φ

then p � T and p
� � AF φ, so p � SAF φ.

Hence F
�
SAF φ ��� SAF φ

” � ” Let us take p � SAF φ

that is p � T and for any path p � s0 � s1 � � � � exists i � � such that
si
� � φ, or p

� � φ.

if p
� � φ then p � Y

else for all s0 � p � s0, and for all paths s0 � s1 � � � � exists i � � , such that
si
� � φ

then for all s0 � p � s0, s0
� � AF φ

that is for all s0 � p � s0, s0 � SAF φ
then p � G

�
SAF φ � .

Hence SAF φ � F
�
SAF φ �

In conclusion, SAF φ
� F

�
SAF φ � , so SAF φ is a fixed point for F

(3.2) We prove that SAF φ � µ Z � F
�
Z � .

Let us analyze first µ Z � F
�
Z � :

µ Z � F
�
Z � � µ Z � Y � G

�
Z � � /0 � �

Y � G
�
/0 ��� � �

Y � G
�
Y � G

�
/0 ����� �

� � �

� Y � G
�
/0 � � G

�
Y � G

�
/0 ��� � � � �

where:
Y � � p � p � T � p

� � φ �
G
�
/0 � � � p � p � T and for all s � p � s � s � /0 � � /0

( because s � /0 is false, so the entire conjunction inside curly brackets is
false, hence G

�
/0 � has no element )

Hence F
�
/0 � � Y � G

�
/0 � � Y � � p � p � T � p

� � φ �
G
�
Y � G

�
/0 ��� � � p � p � T � for all s � p � s � s � Y � G

�
/0 � � �

� p � p � T � for all s � p � s � s � Y � � � p � p � T � for all s � p � s � s
� � φ �

Hence F 2 � /0 � � Y � G
�
Y � G

�
/0 ��� �

� p � p � T � p
� � φ � � � p � p � T � for all s � p � s � s

� � φ � �
� p � p � T � for all s � p � s � � p � � φ or s

� � φ � �
G
�
Y � G

�
Y � G

�
/0 ����� �

� p � p � T � for all s0 � p � s0 � s0 � Y � G
�
Y � G

�
/0 ��� � �

� p � p � T � for all s0 � p � s0 � � s0 � Y or s0 � G
�
Y � G

�
/0 ����� � �

� p � p � T � for all s0 � p � s0 � � s0
� � φ or for all s1 � s0 � s1 � s1 � Y � � �
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� p � p � T � for all s0 � p � s0 � � s0
� � φ or for all s1 � s0 � s1 � s1

� � φ � � �
� p � p � T � for all s0 � s1 � p � s0 � s1 � � s0

� � φ or s1
� � φ � �

Hence F 3 � /0 � � Y � G
�
Y � G

�
Y � G

�
/0 ����� � � p � p � T � p

� � φ � �
� � p � p � T � for all s0 � s1 � p � s0 � s1 � � s0

� � φ or s1
� � φ � � �

� p � p � T � for all s0 � s1 � p � s0 � s1 � � p � � φ or s0
� � φ or s1

� � φ � �
� � �

By mathematical induction, we see that for all n � � we have:
F n � 2 � /0 � �
� p � p � T � for alls0 � � � sn � p � s0 � � � � � sn � � p � � φ or s0

� � φ or � � � sn
� � φ � �

Let us consider p � SAF φ

then p � T and p
� � AF φ

then p � T and for all paths p � s0 � s1 � � � � we have ( p
� � φ or

exists i �
p � s0 � s1 ��� � � � ��� such that si

�
p � s0 � s1 ��� � � �

� � φ)

let us consider a path p � s0 � s1 � � � �

if p
� � φ then p � Y ,so p � F

�
/0 �

else (i.e. exists i �
p � s0 � s1 ��� � � � ��� such that si

�
p � s0 � s1 ��� � � �

� � φ)
we have p � F i

�
p � s0 � s1 ��� � � ��� 2

then p � T and for all paths p � s0 � s1 � � � � we have ( p � F
�
/0 � or

exists i �
p � s0 � s1 ��� � � � ��� such that p � F i

�
p � s0 � s1 ��� � � ��� 2)

then p � T and for all paths p � s0 � s1 � � � � we have p � µ Z � F
�
Z � or

(because F
�
/0 ��� µ Z � F

�
Z � and F i

�
p � s0 � s1 ��� � � ��� 2 � µ Z � F

�
Z � )

then p � µ Z � F
�
Z �

So, we proved that SAF φ � µ Z � F
�
Z �

Since SAF φ is a fixed point of F then we have that µ Z � F
�
Z � � SAF φ (least

fixed point is a subset of any other fixed point)

From the last two inclusions we conclude that µ Z � F
�
Z � � SAF φ
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7.

We have to prove:
AG φ � ν Z � φ � AX Z

where:

Y � � p � p � T � p
� � φ �

G
�
Z � � � p � p � T � � for all s � p � s � s � Z � �

Let us denote F : 2T � � 2T such that:

F
�
Z � � Y � G

�
Z �

We have to prove that:

(1) F is monotonic

(2) F is continuous

(3) the least fixed point of F is the set of positions in the tree T where the
formula AG φ is true.

(1) F is monotonic

Let us take Z1 � Z2 � 2T two sets of positions in T, such that

Z1 � Z2

We proved at 6.(1).(a) that G
�
Z1 ��� G

�
Z2 �

So we have:

F
�
Z1 � � Y � G

�
Z1 ��� Y � G

�
Z2 � � F

�
Z2 �

(since if Z1 � Z2 then G
�
Z1 ��� G

�
Z2 � , so Y � G

�
Z1 ��� Y � G

�
Z2 � )

Hence, F
�
Z1 ��� F

�
Z2 � , so F is monotone.

(2) F is continuous.

Let us take an increasing sequence Z0 � Z1 � � � �

We proved at 6.(2) that G
� � i Zi � � � i G

�
Zi �

Now, the proof for F continuous:

� i F
�
Zi � � � i

�
Y � G

�
Zi ��� � �

Y � G
�
Z0 ��� � �

Y � G
�
Z1 ��� � � � �

�
Y � �

G
�
Z0 � � G

�
Z1 � � � � � � � Y � � � i G

�
Zi ��� � Y � G

� � iZi � � F
� � iZi �

Hence. F is also continuous.

From (1) and (2) we deduce that F has a greatest fixed point.
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(3) We denote by
SAG φ

� � p � p � T � p
� � AG φ �

(the set of positions in T where AG φ holds).

(3.1) First we show that SAG φ is a fixed point of F . That is we have to prove that

F
�
SAG φ � � SAG φ

Let us take p � F
�
SAG φ �

that is p � Y � G
�
SAG φ �

iff p � Y and p � G
�
SAG φ �

iff p � T � p
� � φ and for all s � p � s � s

� � AG φ
iff p � T � p

� � φ and for all s � p � s � for all paths s � s1 � � � � we have
s
� � φ and for all i � � � , si

� � φ
iff p � T and for all paths p � s � s1 � � � � we have p

� � φ � s
� � φ � s1

� �
φ � � � �

iff p � T and p
� � AG φ

In conclusion, SAG φ
� F

�
SAG φ � , so SAG φ is a fixed point for F

(3.2) We prove that ν Z � F
�
Z ��� SAG φ.

Let us analyze first ν Z � F
�
Z � :

ν Z � F
�
Z � � ν Z � Y � G

�
Z � � T � �

Y � G
�
T ��� � �

Y � G
�
Y � G

�
T ����� �

� � �

� Y � G
�
T � � G

�
Y � G

�
T ��� � � � �

where:
Y � � p � p � T � p

� � φ �
G
�
T � � � p � p � T and for all s � p � s � s � T � � T

( because s � T is always true, so the entire conjunction inside curly brackets
is always true for the elements of T, hence G

�
T � contains all the elements in

T )

Hence F
�
T � � Y � G

�
T � � Y � T � Y � � p � p � T � p

� � φ �
G
�
Y � G

�
T ��� � � p � p � T � for all s � p � s � s � Y � G

�
T � � �

� p � p � T � for all s � p � s � s � Y � � � p � p � T � for all s � p � s � s
� � φ �

Hence F 2 � T � � Y � G
�
Y � G

�
T ��� �

� p � p � T � p
� � φ � � � p � p � T � for all s � p � s � s

� � φ � �
� p � p � T � for all s � p � s � � p � � φ and s

� � φ � �
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G
�
Y � G

�
Y � G

�
T ����� �

� p � p � T � for all s0 � p � s0 � s0 � Y � G
�
Y � G

�
T ��� � �

� p � p � T � for all s0 � p � s0 � � s0 � Y and s0 � G
�
Y � G

�
T ����� � �

� p � p � T � for all s0 � p � s0 � � s0
� � φ and for all s1 � s0 � s1 � s1 � Y � � �

� p � p � T � for all s0 � p � s0 � � s0
� � φ and for all s1 � s0 � s1 � s1

� � φ � � �
� p � p � T � for all s0 � s1 � p � s0 � s1 � � s0

� � φ and s1
� � φ � �

Hence F 3 � T � � Y � G
�
Y � G

�
Y � G

�
T ����� � � p � p � T � p

� � φ � �
� � p � p � T � for all s0 � s1 � p � s0 � s1 � � s0

� � φ and s1
� � φ � � �

� p � p � T � for all s0 � s1 � p � s0 � s1 � � p � � φ and s0
� � φ and s1

� � φ � �
� � �

By mathematical induction, we see that for all n � � we have:
F n � 2 � T � �
� p � p � T � for all p � s0 � � � � � sn � � p � � φ and s0

� � φ and � � � sn
� � φ � �

Let us consider p � ν Z � F
�
Z �

then p � T and for all paths p � s0 � s1 � � � � we have
( p
� � φ and s0

� � φ and s1
� � φ and � � � )

(using the description of F n � 2 � T � )
iff p � T and p

� � AG φ

iff p � SAG φ

So, we proved that ν Z � F
�
Z ��� SAG φ

Since SAG φ is a fixed point of F then we have that SAF φ � ν Z � F
�
Z �

(greatest fixed point is a supra-set of any other fixed point)

From the last two inclusions we conclude that ν Z � F
�
Z � � SAG φ
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