CS3234 - Tutorial 8, Solutions

1.
Applying the model checking algorithm to check properties of safety, liveness and
non-strict sequencing for the first mutual exclusion model:

(@ @ =AG~(c1AC)

- SAT(AG —(c1ACp)) =
= SAT(— EF = =(c1AC)) =
= SAT(- EF (c1AC2)) =
= S — SAT(EF (c1AcCp)) =
= S — SAT(E[T U (c1Acp)]) relation (1)
- SAT(E[T U (Cl/\Cz)]) =
W =SAT(T)=S
X=S
Y = SAT(c1 Acp) = SAT(c1) NSAT(c2) = {S2,54} N {S7,56} =0
stepl X=Y =0
Y =YU(Wn{s/exists s’ such that s — s’ and s’ € Y})
=0U(SN0)=0
step2 STOP because X =Y =0
So, SAT(E[T U (c1Acy)]) =0

- coming back to relation (1), we get:
SAT(AG —(c1ACp)) =S\ 0=S.

(b) m=AG (tl — AF Cl)

- SAT(AG (tl — AF Cl)) =
— SAT(-EF-(t; — AF ¢1)) =
=S — SAT(EF —|(t1—)AF Cl)) =
= S — SAT(E[T U (=(ty —» AFcy))]) =
= S — SATeu(T,—(t1 — AF c1)) relation (1)
- SATEu(T,—I(tl — AF Cl)) =
W = SAT(T) =S
X=S
Y = SAT(~(ty — AF 1)) =
=S - SAT(t1—>AF Cl) =
— S — SAT(-yVAF¢;) =
= S — (SAT(~t;) USAT(AF ¢y)) =
= S — ((S — SAT(t1)) USATar(C1)) =
=S - ((S - {51,33,37})USATAF(C1)) =
S — ({50,82,84,35,86}USATAF(Cl)) =

relation (2)



- SAT/_\F(Cl) =

X=S

Y = SAT(Cl) = {32,34}

stepl X =Y = {sp,54}
Y =YU{s/forall s withs —s' we have s’ € Y} =
= {82,854} U0 = {s2,84}

step2 STOP because X =Y = {s2,54}

SO, SATAF(Cl) = {32,34}

- coming back to relation (2), we have:
X=S
Y =S —({S0,52,54,55,56} U {S2,84}) =S — {50,52,54,55,5} =
= {Sla S3, 87}
stepl X=Y = {51,33,37}
Y =
= {51,53,57} U (SN{s/ exists s’ such thats - s"and s' € Y} =
= {81,83,57} U (SN {s0,81,53,S5,56,57}) = {S0,51,53,S5,56,57}
step2 X =Y = {50,31,33,35,36,37}
Y =
= {s0,51,53,55,56,57} U (SN{s/exists s’ s.t. s > s’ and s' € Y} =
= {30,31,33,35,36,37} U (Sﬂ {So, S1,S2,S3, 54, 85,86,37}) =S
step3 X=Y =S
Y =SU (SN{s/ exists s’ such that s -+ s"and s’ € Y} =S
step4 STOP because X=Y =S
So, SATEu(T,—'(tl — AF Cl)) =S

- coming back to relation (1) we have:
SAT @ =S — SATegy(T,—~(t1 > AFc)))=S — S=0
SAT =0

(3) 3= AG (nl — EX tl)

- SAT(AG (n; — EXty)) =
= SAT(-EF—(ny — EXty)) =
= S — SAT(EF ~(n; — EXty)) =
= S — SAT(E[T U (=(n1 — EXt1))]) =
= S — SATgy(T,—(n1 — EXty)) relation (1)

- SATEU(T,—|(n1 — EX t]_)) =

W =SAT(T) =S

X=S

Y = SAT(ﬁ(nl — EX tl)) =
= S — SAT(n; — EXty) =
=S — SAT(—|H1VEX tl) =
= S — (SAT(=ny) USAT(EXt;)) =
= S — ((S — SAT(n1)) USATex(t1)) =



=S — ((S — {So,S5,Se})USATEx('[1)) =
= S — ({s1,52,53,54,57} USATex(t1)) relation (2)
- SATex(t1) =
X = SAT(tl) = {31,83,87}
Y={seS/s—¢ forsomes' € X} =
= {S0,51,53,55,56,57}
So, SATex (t1) = {S0,51,53,55,56,57}
- coming back to relation (2), we have:
X=S
Y =S — ({50,52,54,55,56} U {S0,51,53,Ss5,S6,57})
=S — {s0,51,52,53,54,55,56,57} = 0

stepl X=Y =0
Y =
=0 U (SN{s/ exists s’ such thats —+s' and s’ € Y} =
=0U (SN0)=0

step2 STOP because X =Y =0
So, SATEU(T,—|(n1 — EX tl)) =0

- coming back to relation (1) we have:
SAT = S — SATEu(T,—!(nl —EX tl)) =S - 0=S
SAT @3=S

(4) W= EF (01/\ E[Cl U (ﬁCl/\ E[ﬁCz U Cl])]) =EF ]

- SATy, =
= SAT(E[T UY]) =
= SATey(T, W)
W =SAT(T)=S
X=S
Y = SAT(c1 AE[c1 U (-c1 AE[-C2 U cq])]) =
= SAT(c1) NSAT(E[c1 U (mc1 AE[-Cc2 U cq))]) =
= {82,84} ﬂSAT(E[Cl U (—|Cl/\ E[—|Cz U Cl])]) =
= {S2,54} NSATEey(c1, (—C1 AE[C2 U cq])) relation (1)

- SATEu(Cl, (—|C1 A E[—|Cz U Cl])) =
W = SAT(Cl) = {32,34}
X=S
Y = SAT(ﬁCl A E[—|Cz U Cl]) =
= SAT(=c1) N SAT(E[-c, U cy]) =
— (S — SAT(c1)) N SAT(E[-¢c, U c1]) =
= {so,51,53,55,56,57} N SAT(E[-c,Ucy]) =
= {80,81,83,85,86,87} N SATEu(—lCz,Cl) relation (2)
- SATEu(—'Cz, Cl) =
W = SAT(-c,) =S — SAT(c2) = {S0,51,52,53,54,55 }
X=S



Y = SAT(Cl) = {32,34}
stepl X =Y = {s2,54}
Y=Y U ({80,81,82,83,84, 85} N {81,82,83})
= {82,584} U {81,52,53} = {51,52,83,54}
step2 X =Y = {51,32,33,34}
Y=Y U ({80,81,82,83,84, 85} N {80,81,82,83,85,87}) =
= {51,52,53,54} U{S0,51,52,53,55} =
= {S0,51,52,53,54,55}
step3 X =Y = {S0,51,52,53,54, 55}
Y = {80,81,82,83,84,85} U {30,31,32,33,34,35} =
= {30,31732,33734735}
step4 STOP because X =Y = {So,S1,52,53,54,55 }
So, SATgy(—C2,¢1) = {S0,51,52,53,54,55}

coming back to relation (2), we have:

W= {32,84}

X=S

Y = {80,81,83,85,86,87} N {30,31,32,33,34,35} =

= {80781583785}

stepl X =Y = {50,31,33,35}
Y = {30,81,83,85} U ({82,84} N {30,31,32,34,35,36,37}) =
= {50,51,53,55} U {52,854} =
= {S0,51,52,53,54,S5}

step2 X =Y = {S0,51,52,53,54,55}
Y = {80,81,82,83,84, 85}

step3 STOP because X =Y = {so,S1,52,53,54,55 }

So, SATEu(Cl, (—|C1/\ E[_ICZ U Cl])) = {30,31,32,33,34,35}

coming back at relation (1). we get:
SAT@y =
W =SAT(T)=S
X=S
Y = {32,84} N SATgy (C1, (—|Cl/\ E[ﬂCz U Cl])) =
= {s2,54} N{So0,51,52,53,54,55}
= {s2,84}
stepl X =Y = {s2,54}
Y=Y U (SN {s1,52,53}) =
= {32,34} U {81,82,83} =
= {51,52,53,54}
step2 X =Y = {51,32,33,34}
Y = {s1,52,53,54} U (S N {S0,51,52,53,55,57}) =
= {31,32,33,34} U {80,81,82,83,85,87} =
= {30,31a32,33as4as5,37}
step3 X =Y = {S0,51,52,53,54, 55,57}
Y = {s0,51,52,53,54,55,57} U (S N {S0,51,52,53,54,55,56,57} =



- {30731132’33734135737} U S -

=S
stepd X=Y =S
Y=SU(SNS)=S
stepb STOP because X =Y =S

So, SAT@, =S
2.and 3.
Similar reasoning to the first exercise.
4,
MCODULE mai n
VAR
p : bool ean;
g : bool ean;

state : {s0, sl, s2, s3, s4};
ASSI GN

s4};
s3};
s4};
sl, s2, s4};

p := case
(state =s0) : 0;
(state =s1) : 1;
(state =s2) : 0;
(state =s3) : 1;
(state =s4) : 0;
1: {0, 1};
esac;
q: = case
(state =s0) : 1,
(state =s1) : 1;
(state =s2) : 0;
(state =s3) : 0;
(state = s4) : 1;
1: {0, 1};
esac;
init(state) :=s0
next(state) := case
(state = s0) : {s1,
(state = sl) : {s2,
(state = s2) : {s1,
(state = s3) : {s0,
(state = s4) : s4;
1: {s0, s1, s2, s3, s4};
esac;
SPEC



AG(p->A[pU(lp&A[lpUd])])

You may change the initial state to be one of s1, s2, s3, s4 to establish its truth
value for the given model and chosen initial state.

5.

- If we analyze the SMV program, we notice that there are two instances
of the same process, count er _cel |, expressing the behavior of bit0 and
bi t 1. Thus, we would have two models (automaton), each for one bit (bi t 0,
bi t 1).When building the models, we need to extract information about the
states, transitions and the labeling function (values of variables in each state).
Noting that:

- for both models corresponding to bi t 0 and bi t 1, there are three vari-
ables (val ue, carry.in, carry_out).

- the carry_i n value for the bi t 0 model is always 1, thus the model has
only two states (depending if val ue is0or 1). (carry_out is calculated
from values of val ue and carry_i n).

- the model for bit1 has 4 states, since in this case carry_in is not
anymore a constant.

- withv_0, ci_0, co_0we denote val ue, carry_in, carry_out for
bitOandwithv_1, ci_1, co_lwedenoteval ue, carry.n, carry_out
forbit1.

- For bi t 0 we have the model:

- For bi t 1 we have the model:



- Combining both models, synchronously, we get:




6.

We have to prove:
AF@ = pZ.ov AXZ

where:

Y ={p/peT, pEo}
G(Z) = {p/peT, (foralls, p—s,s€Z)}

Let us denote & : 2T — 2T such that:
F(2) =Y U G@2)

We have to prove that:

(1) ¥ is monotonic
(2) ¥ is continuous
(3) the least fixed point of 7 is the set of positions in the tree T where the
formula AF @is true.
(1) ¥ is monotonic

Let us take Z1, Zo € 2T two sets of positions in T, such that
Z,C 27,

(@) We prove firstthat G(Z1) C G(Z2)
Letustake p € G(Z1)
iff peT, (foralls, p—s,se€Z)
since Z, C Z»
then peT, (foralls, p—s, s€Zy)
iff p € G(Z2)

So, if p € G(Z1) then p € G(Z2).
Thatis G(Z1) C G(Z>).

Now we have:

F(Z1) =Y UG(Z1) CY UG(Z2) = F(22)
(since if Zy C Z then G C G(Z2),s0YUG(Z1) C YUG(Z2)

(Z1)
Hence, ¥(Z1) C ¥(Z),s0 F is monotone.
(2) 7 is continuous.

Let us take an increasing sequence Zg C Z; C ...



We prove first that G(U; Zi) = Ui G(Zi)

Letustake p € G(Ui Z))
iff peTandforalls, p—s,s € UjZ
iff peTandforalls, p—s,exists issuch thats € Z;

let us take ip = maxp_sis. Since ZoC Z; C ..., then forall s, p — s, we have
s € Z, C Z;, (because is < ip, 50 Zj, C Z; ).

then pe Tandforall s, p— s, exists ip such thats € Z;,
then exists ip € Nsuch that p € G(Zj,)
iff p € Ui G(Zi)
So, we have G(U; Zi) C U; G(Zy).

The other inclusion is proved based on the property (a) from previous
point:

Since for all i € N we have Z; C UiZ; then, for all i € N we have
G(Z) € G(Uizi).
Hence UiG(Zi) C G(UiZ).
Finally, we can conclude that G(U; Zi) = Ui G(Z;).
Now, the proof for F continuous is obvious:
Ui F(Z) = Ui (YUG(Z)) = (YUG(Zo)) U (YUG(Z1)) U ... =
YU (G(Zo)uG(Z1)U...) =Y U (Ui G(Z)) = Y U G(UiZi) = F(UiZ)
Hence. ¥ is also continuous.
From (1) and (2) we deduce that F has a least fixed point.
(3) We denote by
Sare = {p/ PE T, p=AF ¢}
(the set of positions in T where AF @ holds).

(3.1) First we show that Sar ¢ is a fixed point of . That is we have to prove that
F(SaFe) = SaFg

rC” Letustake p € F(SaF o)
thatisp € Y U G(SaF )
if peYthenpeTandp=@thenpl=AF@thenp € Sarg

if p e G(Saro)
thenp € T,and foralls, p— s, we have s € Sar ¢
thenp € T,andforalls, p—s,s=AF@
then p € T, and for all s§, p— sk, and for any path s — sk — sk — ...

9



”:_)n

(3.2)

exists i(k) € N such that sfy,, = @

then p € T, and for all paths p—s—sk sk . existsi(k) €N
such thats |_
then p € Tand PEAF@ SO € SaFe

Hence F(Sarg) € Sarg

Letustake p € Sarg
that is p € T and for any path p — So — S1 — ... exists i € N such that
SiE@orpkEo.
if pEo@thenpeY

else forall sg, p — sg, and for all paths sp — 51 — ... exists i € N, such that
Sj =
th‘en(fpor all so, p— S0, So = AF @
that isfor all so, p— So, So € SaAF ¢
thenp € G(Sar o)

Hence Sar ¢ € ¥ (SaF o)

In conclusion, Sar ¢ = F (SaAF ), SO SaF ¢ is a fixed point for F
We prove that Sar ¢ C W Z. F(Z).

Let us analyze first p Z. 7 (2):

IJZ T(Z) = pZ.Yug(Z) =0u (Yug(@) u (Yug(yug(?)) u
YUugOugug)u

where:

Y ={p/peT, pko
G(0) = {p/peTandforalls, p—s,sc0} =0

( because s € 0 is false, so the entire conjunction inside curly brackets is
false, hence G(0) has no element )

Hence F(0) =Y U G0) =Y = {p/peT, pl ¢

GY U G0) = {p/peT,forals, p—s,sec YUGD)} =
{p/peT,foralls, p—s,seY} = {p/peT,foralls, p—s,sEo}

Hence 72(0) = Y U G(Y U G(0)) =
{p/peT, pE@ U{p/peT, foralls, p—=s,s=9} =
{p/ peT,foralls, p—s, (p=gorsi=9) }

G(Y u gy ug)) =

{p/ peT,forallsg, p—so,S0€ YUG(Y U G(0))} =

{p/ peT,forall sy, p—so, (So€ Yorspe G(Y U G(0))} =

{p/ p€T, forall s, p— S0, (So|=@or foralls;, so—>s1,81€Y)} =

10



then

then

then

then

then

{p/ peT, forall so, p— So, (So =@or forall s1, So =51, 51 =@} =
{p/ peT, forall so, 51, p—So— 51, (So = Qorsi = @)}

Hence 73(0) =Y U G(Y U G(Y U G(0))) = {p/ peT, pE @t U
U{p/ peT,forall sy, s, p—So— 51, (So = Qorsi =@} =
{p/ peT, forall sp, S1, p— So— S1, (P = @O0rsg =@ors; =@}

By mathematical induction, we see that for all n € N we have:
9:n+2(0) —
{p/peT,forallsy...Sn, p—So—...—Sn, (P =@0Orsg=@or...sn =@}

Let us consider p € Sar ¢
peTand pl=AF@

p € T and for all paths p — sg — s1 — ... we have ( p = @or
eXistS i(p,g—5,5...) € Nsuch that sjp 5. ) F @)

let us consider a path p — sg — S1 — ...
if pl=othenpeY,s0pe F(0)
else (i.e. exists i(p_sy—s,—...) € N such that sjp_,5)—5,...) F @)
we have p € Fi(P2%o2s1..) +2

p € T and for all paths p — sg —$1 — . We have (p € F(0) or
eXiStS i(py5y5,..) € N'such that p € Fi(Poso=s1=) +2)

p € T and for all paths p —sp — s — ... we have p € uZ. ¥(Z) or
(because F(0) C pZ. F(Z) and FilP?o=si=-)+2 C 7. F(2))

pe nZ. F(2)

So, we proved that Sap ¢ C P Z. F(Z)

Since Sar o is a fixed point of 7 then we have that pZ. F(Z) C Sar o (least
fixed point is a subset of any other fixed point)

From the last two inclusions we conclude that u Z. F(Z) = Sare

11



1)

2

We have to prove:
AGp = vZ.op NAXZ

where:
Y ={p/peT,p=o0}
G(Z) = {p/peT, (foralls, p—s,s€Z)}

Let us denote & : 2T — 2T such that:
F(2) =Y N G@)

We have to prove that:

(1) ¥ is monotonic
(2) ¥ is continuous

(3) the least fixed point of 7 is the set of positions in the tree T where the
formula AG @is true.

F is monotonic

Let us take Z1, Zo € 2T two sets of positions in T, such that
Z,C 27,

We proved at 6.(1).(a) that G(Z1) C G(Z2)
So we have:

F(Z1) =Y NG(Z1) CY NG(Z2) = F(22)
(since if Zy C Z then G C G(Z2),50YNG(Z1) € YNG(Z2)

(Z1)
Hence, ¥(Z1) C ¥(Z),s0 F is monotone.
F is continuous.
Let us take an increasing sequence Zo C Z; C
We proved at 6.(2) that G(U; Zi) = Ui G(Z)
Now, the proof for # continuous:

Ui 7(Z) = Ui (YNG(Z)) = (YNG(Zo)) U (YNG(Z1)) U ... =
Y N (G(Zo)UG(Z1)U...) =Y N (Ui G(Z)) =Y N GUiZi) = F(UiZi)

Hence. F is also continuous.

From (1) and (2) we deduce that F has a greatest fixed point.

12



(3) We denote by
Sace = {p/PE T, p=AG ¢}

(the set of positions in T where AG ¢ holds).

(3.1) First we show that Sac ¢ is a fixed point of . That is we have to prove that
,‘]'—(SAG (p) = SaG ®

Letustake p € F(Sac ¢)
thatisp € Y N G(Sac o)

iff peYandp € G(Saco)

iff peT, pEoandforalls, p—s,sEAG@

iff peT, p=e@andforalls, p— s, for all paths s — s; — ... we have
skE@and forallie Nt, s =0

iff peTandforall pathsp—s—s1—...wehavepE=@ s=q 51
Q...

iff peTand pl=AG @

In conclusion, Sac ¢ = F (SaG ¢), SO SaG ¢ is a fixed point for F
(3.2) We prove thatv Z. F(Z) C Sac o
Let us analyze firstv Z. F(Z):

vZ. T(Z):vZYﬂg() TN (Yng(T))m(Yng(Yng(T)))n
=Y N gMngyngm)n...

where;

Y ={p/peT, pEFe¢}

G(T) = {p/peTandforalls, p—s,secT} =T

(because s € T is always true, so the entire conjunction inside curly brackets
is always true for the elements of T, hence G(T) contains all the elements in
T)

Hence F(T) =Y N G(T) =Y NT =Y = {p/peT, pEo¢}

GY N G(M) ={p/peT,foralls, p—s,se YNG(T)} =
{p/ peT,foralls, p—s,seY} = {p/peT,foralls, p—s,sEo}

Hence 72(T) = Y N G(Y U G(T)) =
{p/peT, pE@ Nn{p/peT,forals, p—s,sE=@} =
{p/ peT,foralls, p—s, (p=@ands =g }

13



G(Y N G(Y N G(T)) =

{p/ peT,forallsy, p—so,So€ YUG(YY N G(T))} =

{p/ peT,forallsp, p—5so, (So€ Yandsp € G(Y N G(T)))} =

{p/ p€T, forall sp, p— S0, (So =@and forall s1, So —5S1, S1€Y)} =
{p/ peT, forall so, p— So, (So =@and forall s1, So =51, S1 = @)} =
{p/ peT, forall sp, S1, p— So — S1, (So =@and s1 = @)}

Hence 73(T) =Y N G(Y N G(Y N G(T))) = {p/peT, pE@ N
N{p/ peT, forallso, s1, p—So — 1, (So =@ands; =@} =
{p/ peT, forall sp, S1, p— So—S1, (P = @and So = @and s; = @)}

By mathematical induction, we see that for all n € N we have:
FHAT) =
{p/peT,forallp—>sp—... > sn, (P E®and sp = @and...s, = @)}

Let us consider p € vZ. F(Z)

then p € T and for all paths p — Sg — S3 — ... we have

(pE@andso|=@ands; =@and ...)
(using the description of #™2(T))

iff pe Tand pl=AG @
iff p € Sace
So, we proved thatv Z. F(Z) C Sac e

Since Sac ¢ is a fixed point of # then we have that Sarg C Vv Z. F(Z)
(greatest fixed point is a supra-set of any other fixed point)

From the last two inclusions we conclude that v Z. F(Z) = Sace
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