National University of Singapore School of Computing CS3234 — Logic and Formal Systems Semester I, 2004/2005

Tutorial 6

1. Model checking, 1:

Apply the model checking algorithm to check properties ϕ_1, ϕ_2, ϕ_3 , and ϕ_4 in the course notes on the first mutual exclusion model.

2. Model checking, 2:

Apply the model checking algorithm to check properties ϕ_1, ϕ_2, ϕ_3 , and ϕ_4 in the course notes on the second mutual exclusion model.

3. Model checking, 3:

Apply the model checking algorithm to check the formula $\phi = AG(p \rightarrow A[p \ U \ (\neg p \land A[\neg p \ U \ q])])$ for the model described in the figure.

- **4. From graphs to SMV**: Write an SMV program for the question in Exercise 3.
- **5. From SMV to graphs**: Draw the state transition diagram associated to the following SMV program and check its CTL formula.

```
MODULE main
VAR
bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
```

```
SPEC
   AG AF bit1.carry_out

MODULE counter_cell(carry_in)
VAR
   value : boolean;
   carry_out : boolean;
ASSIGN
   init(value) := 0;
   next(value) := value + carry_in mod 2;
   carry_out := value & carry_in;
```

For questions 6-7: One can define fixed point operators on a (possibly infinite) tree as follows. By Z, Z', etc. we denote subsets of positions in the tree. Let \mathcal{F} be a mapping $Z \mapsto \mathcal{F}(Z)$. \mathcal{F} is monotone if $Z \subseteq Z'$ implies $\mathcal{F}(Z) \subseteq \mathcal{F}(Z')$; it is continuous if $\mathcal{F}(\bigcup_i Z_i) = \bigcup_i \mathcal{F}(Z_i)$, for any increasing sequence $Z_0 \subseteq Z_1 \subseteq \ldots$ For such a monotone and continuous \mathcal{F} the increasing sequence

$$\emptyset \subseteq \mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset)) \subseteq \dots$$

define the least fixed point of \mathcal{F}

$$\mu Z.\mathcal{F}(Z) =_{def} \emptyset \cup \mathcal{F}(\emptyset) \cup \mathcal{F}(\mathcal{F}(\emptyset)) \cup \dots$$

Similarly, for a monotone and continuous \mathcal{F} the decreasing sequence (T is the set of all positions in the tree)

$$T \supseteq \mathcal{F}(T) \supseteq \mathcal{F}(\mathcal{F}(T)) \supseteq \dots$$

define the greatest fixed point of \mathcal{F}

$$\nu Z.\mathcal{F}(Z) =_{def} T \cap \mathcal{F}(T) \cap \mathcal{F}(\mathcal{F}(T)) \cap \dots$$

- **6. Minimal fixed point** (AF $\phi = \mu Z.\phi \vee AX Z$): Let Y be the positions in a tree where ϕ is true and $\mathcal{G}(Z) = \{p : p \text{ is a position in the tree and any next position of p is in Z}. Show that <math>Z \mapsto Y \cup \mathcal{G}(Z)$ is monotone and continuous and its minimal fixed point $\mu Z.Y \cup \mathcal{G}(Z)$ represents the set of positions in the tree where AF ϕ holds.
- 7. Maximal fixed point (AG $\phi = \nu Z.\phi \wedge AX Z$): Let Y and $\mathcal{G}(Z)$ be as before. Show that $Z \mapsto Y \cap \mathcal{G}(Z)$ is monotone and continous and its maximal fixed point $\nu Z.Y \cap \mathcal{G}(Z)$ represents the set of positions in the tree where AG ϕ holds.