
CS3234: Logic and Formal Systems
Assignment 4, due 11:00 AM, October 7.

1. (10 marks) Note updated problem statement

Consider the encoding of tournament scheduling in SAT presented in Lec-
ture 7 (B/W slide 11). Encode the following constraints as propositional
formulas. You may introduce propositional atoms other than px,y,z. In
this case, formulate constraints between the new variables and px,y,z, also
as propositional formulas. For example, if you introduce a variable b1,4,
which encodes whether Team 1 has a bye in Date 4, you need the following
formula that expresses the connection between b1,4 and the p variables:

(b1,4 → ¬p1,2,4 ∧ ¬p1,3,4 ∧ · · · ∧ ¬p1,9,4 ∧

¬p2,1,4 ∧ ¬p3,1,4 ∧ · · · ∧ ¬p9,1,4) ∧

(¬p1,2,4 ∧ ¬p1,3,4 ∧ · · · ∧ ¬p1,9,4 ∧

¬p2,1,4 ∧ ¬p3,1,4 ∧ · · · ∧ ¬p9,1,4 → b1,4)

As in the previous formula, you may use the · · · notation, if the meaning
is clear.

• UNC (Team 1) plays Duke (Team 2) in the last date and in Date 11.

Solution. The slides mention that px,y,z encodes that Team x has
a home game against Team y in Date z. Thus, the requirement that
UNC plays Duke in Date 11 needs to consider both possibilities for
the venue: UNC plays home or Duke plays home. This is encoded
by:

p1,2,11 ∨ p2,1,11

Similarly, the two options need to be considered for the last date.
Overall, the following formula captures the requirement:

(p1,2,11 ∨ p2,1,11) ∧ (p1,2,18 ∨ p2,1,18)

• The following pairings must occur at least once in Dates 11 to 18:
Duke (Team 2) – GT (Team 3), Duke (Team 2) – Wake (Team 4),
GT (Team 3) – UNC (Team 1), UNC (Team 1) – Wake (Team 4).

Solution. The fact that a pairing occurs at least once can be rep-
resented by a disjunction of all possibilities, again considering both
options for the venue. Overall, the following conjunction results:

(p2,3,11 ∨ p3,2,11 ∨ p2,3,12 ∨ p3,2,12 ∨ · · · ∨ p2,3,18 ∨ p3,2,18) ∧

(p2,4,11 ∨ p4,2,11 ∨ p2,4,12 ∨ p4,2,12 ∨ · · · ∨ p2,4,18 ∨ p4,2,18) ∧

(p3,1,11 ∨ p1,3,11 ∨ p3,1,12 ∨ p1,3,12 ∨ · · · ∨ p3,1,18 ∨ p1,3,18) ∧

(p1,4,11 ∨ p4,1,11 ∨ p1,4,12 ∨ p4,1,12 ∨ · · · ∨ p1,4,18 ∨ p4,1,18)

• No team can play away on both last dates.

1



Solution. A team x plays away on a date, if there is some other
team that plays home against x on that date. Thus, one way of
expressing the constraint is:

¬((p2,1,17 ∨ p3,1,17 ∨ p4,1,17 ∨ · · · ∨ p9,1,17)

∧

(p2,1,18 ∨ p3,1,18 ∨ p4,1,18 ∨ · · · ∨ p9,1,18)

)

∧

¬((p1,2,17 ∨ p3,2,17 ∨ p4,2,17 ∨ · · · ∨ p9,2,17)

∧

(p1,2,18 ∨ p3,2,18 ∨ p4,2,18 ∨ · · · ∨ p9,2,18)

)

∧
...

∧

¬((p1,9,17 ∨ p2,9,17 ∨ p3,9,17 ∨ · · · ∨ p8,9,17)

∧

(p1,9,18 ∨ p2,9,18 ∨ p3,9,18 ∨ · · · ∨ p8,9,18)

)

• Dates 1 and 8 are mirrored. This means two teams play each other
in Date 1, iff they play each other in Date 8.

2



Solution. Mirroring can be enforced by stating the double-implication
of the corresponding p variables:

((p1,2,1 → p2,1,8) ∧ (p2,1,8 → p1,2,1) ∧

(p1,3,1 → p3,1,8) ∧ (p3,1,8 → p1,3,1) ∧

...

(p1,9,1 → p9,1,8) ∧ (p9,1,8 → p1,9,1))

∧

((p2,1,1 → p1,2,8) ∧ (p1,2,8 → p2,1,1) ∧

(p2,3,1 → p3,2,8) ∧ (p3,2,8 → p2,3,1) ∧

...

(p2,9,1 → p9,2,8) ∧ (p9,2,8 → p2,9,1))

∧
...

∧

((p9,1,1 → p1,9,8) ∧ (p1,9,8 → p9,1,1) ∧

(p9,2,1 → p2,9,8) ∧ (p2,9,8 → p9,2,1) ∧

...

(p8,9,1 → p9,8,8) ∧ (p9,8,8 → p8,9,1))

2. (10 marks) (a.k.a. exercise 8 in the lecture notes)

We inductively define the set of binary trees as follows:

Tree = • |
Tree Tree

Define (paper and Coq) a function that doubles all of the leaves in a tree.
For example, this function should behave as follows:

double(•) = • •
double(• •) =

• • • •
double(

• • •
) =

• •
• • • •

Solution. Here is the double function:

double(t) ≡

{

• • when t = •

double(tl) double(tr)

when t =
tl tr

3



And here is the Coq implementation:

Fixpoint double (t : Tree) : Tree :=

match t with

| Leaf => Node Leaf Leaf

| Node tl tr => Node (double tl) (double tr)

end.

3. (10 marks) (a.k.a. exercise 10 in the lecture notes)

Using the double function you defined for the previous problem, and the
following definition for leaves:

leaves(t) ≡

{

1 when t = •
leaves(tl) + leaves(tr) when t =

tl tr

Please prove:

∀t
(

leaves(double(t)) = leaves(t) + leaves(t)
)

Solution. By induction on the structure of t using induction hypothesis

IH(t) ≡ leaves(double(t)) = leaves(t) + leaves(t)

• Case 1: (t = •). We have

leaves(double(•)) = leaves(• •)

= leaves(•) + leaves(•)

This is enough to prove case 1.

• Case 2: (t =
tl tr

). We can assume the induction hypotheses:

leaves(double(tl)) = leaves(tl) + leaves(tl)
leaves(double(tr)) = leaves(tr) + leaves(tr)

We therefore have:

leaves(double(
tl tr

))

= leaves

(

double(tl) double(tr)

)

= leaves(double(tl)) + leaves(double(tr))

= leaves(tl) + leaves(tl) + leaves(tr) + leaves(tr)

=
(

leaves(tl) + leaves(tr)
)

+
(

leaves(tl) + leaves(tr)
)

= leaves(
tl tr

) + leaves(
tl tr

)

This is enough to prove case 2.

4



Thus by structural induction we have proved that

∀t
(

leaves(double(t)) = leaves(t) + leaves(t)
)

4. (10 marks)

Now we define the function nodes as follows:

nodes(t) ≡

{

0 when t = •
1 + nodes(tl) + nodes(tr) when t =

tl tr

Please prove:

∀t
(

nodes(double(t)) = nodes(t) + leaves(t)
)

Solution. By induction on the structure of t using induction hypothesis

IH(t) ≡ nodes(double(t)) = nodes(t) + leaves(t)

• Case 1: (t = •). We have

nodes(double(•)) = nodes(• •)

= 1 + nodes(•) + nodes(•)
= 1 + 0 + 0
= 0 + 1
= nodes(•) + leaves(•)

This is enough to prove case 1.

• Case 2: (t =
tl tr

). We can assume the induction hypotheses:

nodes(double(tl)) = nodes(tl) + leaves(tl)
nodes(double(tr)) = nodes(tr) + leaves(tr)

We then have:

nodes(double(
tl tr

))

= nodes

(

double(tl) double(tr)

)

= 1 + nodes(double(tl)) + nodes(double(tr))

= 1 + nodes(tl) + leaves(tl) + nodes(tr) + leaves(tr)

=
(

1 + nodes(tl) + nodes(tr)
)

+
(

leaves(tl) + leaves(tr)
)

= nodes(
tl tr

) + leaves(
tl tr

)

Thus by structural induction we have proved that

∀t
(

nodes(double(t)) = nodes(t) + leaves(t)
)

5



5. (15 marks) (a.k.a. exercise 11 in the lecture notes)

Suppose we attempt to define streams inductively via the rule

n : nat s : stream
n @ s : stream

Strm

Prove that in that case, stream is empty; that is,

¬∃s : stream(>)

Note that this is (deMorgan-) equivalent to:

∀s : stream(⊥)

If you set this up correctly, the proof should be very short.

Solution. By induction on the structure of s. We use IH(s) = ⊥.

• Case 1: (s = n@s′). We can assume IH(s′), that is, ⊥. Since we are
trying to prove IH(s), that is, ⊥, we are done.

Thus by we have proved ∀s : stream(⊥) by induction.

6. (15 marks) (a.k.a. exercise 5 in the lecture notes)

Give a series of rules and a complete and invertible set of objects satisfying
those rules that is neither the least (inductive) nor greatest (coinductive).

Solution. For the rules, use the following:

t : τ
Y(t) : τ

Yτ
t : τ

Z(t) : τ
Zτ

Define the set S as follows:

S ≡
{

Y(Y(Y(Y(. . .)))), (call this element Yω)

Z(Yω), Z(Z(Yω)), Z(Z(Z(Yω))), Z(Z(Z(Z(Yω)))), . . .

Y(Z(Yω)), Y(Z(Z(Yω))), Y(Z(Z(Z(Yω)))), . . .

Z(Y(Z(Yω))), Z(Y(Z(Z(Yω)))), . . .

Y(Y(Z(Yω))), Z(Z(Y(Z(Yω)))), . . .

Y(Y(Z(Z(Yω)))), . . .

Y(Z(Y(Z(Yω)))), . . .

Z(Y(Y(Z(Yω)))), . . .

Y(Y(Y(Z(Yω)))), . . .

. . .
}

In other words, S contains the infinite-Y element Yω, plus all finite se-
quences of Z and Y (including the empty sequence), followed by a single

6



Z, followed by Yω . The set S is complete since given an element s ∈ S,
applying the constructors Y or Z one time still leaves you in S (we just
made the finite sequence at the beginning one element longer, except in
the case where we added an extra Y to the front of Yω , which just gives
us Yω again). The set S is invertible since every element is made from the
rules Yτ and Zτ . The set S is not the least set since the least complete
and invertible set satisfying the rules Yτ and Zτ is empty (see problem
5). The set S is not the greatest complete and invertible set since it does
not contain, among other things, the infinite-Z element:

Zω ≡ Z(Z(Z(Z(. . .)))) 6∈ S

7. (20 marks)

Please prove
∀t

(

(t = t t) ⇒ ⊥
)

You can assume that generators are injective; that is, from

t11 t12
=

t21 t22

you may conclude

t11 = t21 and t12 = t22

You may also assume that

∀t1∀t2
(

(• =
t1 t2

) ⇒ ⊥
)

Solution. We will first prove the related fact:

∀t∀t′ (t = t t′ ⇒ ⊥)

By induction on the structure of t using the induction hypothesis:

IH
′(t) ≡ ∀t′ (t = t t′ ⇒ ⊥)

• Case 1: (t = •). We want to prove IH
′(•), that is,

∀t′ (• = • t′ ⇒ ⊥)

This is automatic from the given assumption

∀t1∀t2
(

(• =
t1 t2

) ⇒ ⊥
)

So we are done with case 1.

7



• Case 2: (t =
tl tr

). We assume IH
′(tl) and IH

′(tr). We will only

need IH′(tl), i.e.:
∀t′ (tl = tl t′

⇒ ⊥)

Now assume t = t t; that is,

tl tr
=

tl tr tl tr

Since generators are injective we have

tl = tl tr
and tr =

tl tr

By IH
′(tl), we can conclude ⊥ by setting t′ = tr. Thus we are done

with case 2.

We have therefore proved

∀t∀t′ (t = t t′ ⇒ ⊥)

by structural induction.

It is clear that this is strictly stronger than the original goal of

∀t (t = t t ⇒ ⊥)

By simply setting t′ = t.

8


