Network Security Analysis via

v- - .

Predicate Logic
&

Increasing Trustworthiness:
A case study in Theorem Prover Design

CS3234
Lecture 7/
Aquinas Hobor and Martin Henz 1

Network Security Analysis via
Predicate Logic

nIF ; 2 al e \l Y L\
i IO appIying tneory

—~t
O
O
-
Q)
O
.
o)

ocess
1. Learn about problem
2. Create a formal model of the problem

3. State the goal

4. Use some kind of tool (theorem prover, SAT
solver, etc.) to solve

M

1. Learn about problem

Problem
We have a network of many computers (100s-1,000s-10,000s)

Each computer only allows certain kinds of connections
(example: the accounting computer only allows the CEO’s
computer to access it; anyone in the world can access the http
services of the web server)

Each computer is running different kinds of software
— Mail software

— Sales software

— Office software

— Web hosting software

— etc.

Often different computers are running different versions,
different patches, etc.

v\

Drahla
rirUYUviIcClii

O
We wish to guarantee some security policy, such as:
— Only the CEO can access at the accounting data

How can we try to do this?

Fact: most security breaches are exploits of known

vulnerabilities. Defending against truly new
vulnerabilities is really hard, so let’s concentrate on

the common case.

2. Create a formal model of the problem

\ 7 II

\Whv da va
4o YO

II+
vviny L

ake CS courses?
In this class, we are teaching you a set of tools

— Propositional Logic

— SAT Solving

— Natural Deduction

— Theorem Proving

— Predicate Logic

— Modal Logic

— Temporal Logic

— Model Checkers

— Hoare Logic

\A/hwv A |
U

vviny

\ 7

~ ~i11 ¥+
Oyout

\

7\ PC 'l oY IV'(‘I\(‘—)
C Lo LUUIOCO.

Q)

In this class, we are teaching you a set of tools
— Propositional Logic /
— SAT Solving
— Natural Deduction
— Theorem Proving

— Predicate Logic

NN\

— Modal Logic
— Temporal Logic

— Model Checkers
— Hoare Logic

>
()]
(O
D
=
O
-
()]

Vs

O
O

Q
i -
e

Lo

-

-

(O

QL
—

e Aty Ay
S NOT easy...

S

Aavrninea FhAa +AA
al |||||5 LIIT LUV

| ~
LC

.. as you know from the homework and exam...

If\ 2 Vel L\ f\f\ \ W}
LCd I 15 LT LUV

easy...

P m
!

1o ~+
SO 1D 11UL

.. as you know from the homework and exam...

.. but figuring out which tools can help in which

situations is hard (knowing the tools well is a

l‘Al‘AAllllAl o~ aas

u +alA ~ATIireA~nce)
[JIEIEL]UIbILE WIIILII Ib Wlly YU take COUIsSEGS...)

Usually you have to study a problem for some
time before you get a good idea.

Model

 We will model the network with a series of implications
(essentially how an attacker would break our policy)

e We have two basic classes of rules:
— Network topology
— Attack vulnerability

 Example rules (network topology):
— forall (p : computer), AccessHTTP(p, WebServerComputer)

— RunningApachel.0(WebServerComputer)

<
O

=
¢
R
)
(V)

e Attack vulnerability rule:

— KnownAttack42: forall (p1 : computer) (p2 : computer),

RunningApachel.0(p2) -> AccessHTTP(p1,p2) ->
TakeOver(p1,p2)

Uh oh...
It appears that anyone can take over the webserver!

<
O

=
¢
R
)
(V)

— TakeOver(CEOComputer, AccountingComputer)

The CEO likes direct access to the accounting computer
so that he can see the latest sales results.

<
O

=
¢
R
)
(V)

— AccessReportTool(WebServerComputer, CEOComputer)

The CEO likes to get regular reports and statistics
from his webserver, so he uses AccessReportTool,
which is this really great piece of software, to do this.

<
O

=
¢
R
)
(V)

— KnownAttack212: forall p1 p2,
AccessReportTool(p1,p2) -> TakeOver(p1,p2)

Unfortunately, he downloaded it from a hacker
website...

1.

2.

3.

4.

5.

6.

How to hack the accounting computer
(and why an evildoer would want to)

Access the webserver:
— forall (p : computer), AccessHTTP(p, WebServerComputer)

Since the webserver is running an old version of Apache, take it over:
— RunningApachel.0(WebServerComputer)
— KnownAttack42: forall (p1 : computer) (p2 : computer),
RunningApachel.0(p2) -> AccessHTTP(p1,p2) -> TakeOver(p1,p2)

Since the CEO is nice enough to have installed AccessReportTool and let it access
his machine, use it to take it over:

— AccessReportTool(WebServerComputer, CEOComputer)
— KnownAttack212: forall p1 p2,
AccessReportTool(p1,p2) -> TakeOver(p1,p2)

Since the CEO likes direct access to the accounting computer, you can now take
over the accounting computer

— TakeOver(CEOComputer, AccountingComputer)
Transfer money to secret bank account

Flee country

3. State the goal

0

f\"\l
udl

What you want to show is that:
forall p, p <> CEOComputer ->
~TakeOver(p, AccountingComputer)

This is one way to formally state the policy; as
the policy gets more complicated it gets harder
to state it...

4. Use some kind of tool (theorem prover, SAT
solver, etc.) to solve

L\.n

l IA 2Vel "\ 1 'aY o @
HUITES d DUOSITITOO...

C D,
J. DU

e Network Topology
— Which connections different computers accept

— This must be determined by some kind of network
analysis tool, maybe that you run each night

e Known Attacks

— Distributed by some security firm (think antivirus
software)

(unfortunately, other people have already patented
this idea...)

How do we build a
trustworthy system?

(a case study)

Theorem Prover Overview

Provided by user
(not to scale)

Provided by
developer
(not to scale)

Math (in some logic)

¢

-

_

Theorem Prover

>~

/

24

Misleading Scales

Statement of Theorem

Hints

-

"

Prover

N

Theorem

/

25

Misleading Scales

4)
Statement of Theorem
Theorem
Hints Prover
_ J
4 I

ment of Theorem

Theorem Prover

_

o

lhin

Twvi 4 in A
11 LITHTIT OO

'I'\A'f\
LVWU

S I
What kinds of things lead to increased trust?
e Complexity: simpler things better!

e Size: smaller things better!

e Stability: constant things better!

e Mechanically verified: much better!

nnnnnnnnn

4)

Theorem Prover
N y

¢

Increasing Confidence
4 :)
Untrusted J
Theorem > Proof
. Prover , l

[Trusted Checker]

29

0
QU

(O
O
)

00

=

O
(O

QL

(Vs

nl
“I

~

Untrusted
Theorem

-

Prover

[Trusted Checker]

30

Misleading Scales
g Untrusted A
Theorem
Untrusted
_ Prover P

Theorem Prover

[Trusted Checker] K /

TTTTTTT
eeeeeee

31

\ 7

TL\ F 7\
11 UVvVC

1e0fr

'aY a'a nV'
clili ri

I
Generates proof from hints

Frequently updated with new features

Can be large (as large or larger than a
compiler, 200k+ lines)

Does not have to be trusted

%

PL\A"\
CIICU

e
|

e
 Checker is very:

— Simple

— Stable

— Small
— Verified by humans very carefully

 Smallest known checker for HOL around 800
lines of C with no library support

— Included parser and simple Prolog interpreter

Misleading Scales

Statement of Theorem

Hints

34

Misleading Scales

Misleading Scales

Misleading Scales

Misleadipt

4)

Untrusted
Theorem
Prover

Misleadipg Scates

Trusted Computing Base

39

2 2N aY Y D
ompu |5 bdSe

Trusted C
 The only things that have to be trusted:
— Checker

— Statement of theorem

e Everything else (hints, library, theorem prover,
proof) does not

e Possible to get 3+ orders of magnitude difference
in size (1000x) between trusted and untrusted

Statement of
Theorem

Hints

v

g Untrusted A J
Theorem > Proof

. Prover l

[Trusted Checker]

