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1. Learn about problem
2. Create a formal model of the problem

3. State the goal

4. Use some kind of tool (theorem prover, SAT
solver, etc.) to solve
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1. Learn about problem



Problem
We have a network of many computers (100s-1,000s-10,000s)

Each computer only allows certain kinds of connections
(example: the accounting computer only allows the CEO’s
computer to access it; anyone in the world can access the http
services of the web server)

Each computer is running different kinds of software
— Mail software

— Sales software

— Office software

— Web hosting software

— etc.

Often different computers are running different versions,
different patches, etc.
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We wish to guarantee some security policy, such as:
— Only the CEO can access at the accounting data

How can we try to do this?

Fact: most security breaches are exploits of known

vulnerabilities. Defending against truly new
vulnerabilities is really hard, so let’s concentrate on

the common case.



2. Create a formal model of the problem
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ake CS courses?
In this class, we are teaching you a set of tools

— Propositional Logic

— SAT Solving

— Natural Deduction

— Theorem Proving

— Predicate Logic

— Modal Logic

— Temporal Logic

— Model Checkers

— Hoare Logic
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In this class, we are teaching you a set of tools
— Propositional Logic /
— SAT Solving
— Natural Deduction
— Theorem Proving

— Predicate Logic

NN\

— Modal Logic
— Temporal Logic

— Model Checkers
— Hoare Logic
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.. as you know from the homework and exam...
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.. as you know from the homework and exam...

.. but figuring out which tools can help in which

situations is hard (knowing the tools well is a
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Usually you have to study a problem for some
time before you get a good idea.



Model

 We will model the network with a series of implications
(essentially how an attacker would break our policy)

e We have two basic classes of rules:
— Network topology
— Attack vulnerability

 Example rules (network topology):
— forall (p : computer), AccessHTTP(p, WebServerComputer)

— RunningApachel.0(WebServerComputer)
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e Attack vulnerability rule:

— KnownAttack42: forall (p1 : computer) (p2 : computer),

RunningApachel.0(p2) -> AccessHTTP(p1,p2) ->
TakeOver(p1,p2)

Uh oh...
It appears that anyone can take over the webserver!
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— TakeOver(CEOComputer, AccountingComputer)

The CEO likes direct access to the accounting computer
so that he can see the latest sales results.
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— AccessReportTool(WebServerComputer, CEOComputer)

The CEO likes to get regular reports and statistics
from his webserver, so he uses AccessReportTool,
which is this really great piece of software, to do this.
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— KnownAttack212: forall p1 p2,
AccessReportTool(p1,p2) -> TakeOver(p1,p2)

Unfortunately, he downloaded it from a hacker
website...
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How to hack the accounting computer
(and why an evildoer would want to)

Access the webserver:
— forall (p : computer), AccessHTTP(p, WebServerComputer)

Since the webserver is running an old version of Apache, take it over:
— RunningApachel.0(WebServerComputer)
— KnownAttack42: forall (p1 : computer) (p2 : computer),
RunningApachel.0(p2) -> AccessHTTP(p1,p2) -> TakeOver(p1,p2)

Since the CEO is nice enough to have installed AccessReportTool and let it access
his machine, use it to take it over:

— AccessReportTool(WebServerComputer, CEOComputer)
— KnownAttack212: forall p1 p2,
AccessReportTool(p1,p2) -> TakeOver(p1,p2)

Since the CEO likes direct access to the accounting computer, you can now take
over the accounting computer

—  TakeOver(CEOComputer, AccountingComputer)
Transfer money to secret bank account

Flee country



3. State the goal
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What you want to show is that:
forall p, p <> CEOComputer ->
~TakeOver(p, AccountingComputer)

This is one way to formally state the policy; as
the policy gets more complicated it gets harder
to state it...



4. Use some kind of tool (theorem prover, SAT
solver, etc.) to solve
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e Network Topology
— Which connections different computers accept

— This must be determined by some kind of network
analysis tool, maybe that you run each night

e Known Attacks

— Distributed by some security firm (think antivirus
software)

(unfortunately, other people have already patented
this idea...)



How do we build a
trustworthy system?

(a case study)



Theorem Prover Overview

Provided by user
(not to scale)

Provided by
developer
(not to scale)

Math (in some logic)
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Misleading Scales
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Misleading Scales
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What kinds of things lead to increased trust?
e Complexity: simpler things better!

e Size: smaller things better!

e Stability: constant things better!

e Mechanically verified: much better!
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Increasing Confidence
4 : )
Untrusted J
Theorem > Proof
. Prover , l

[ Trusted Checker ]
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Misleading Scales
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Generates proof from hints

Frequently updated with new features

Can be large (as large or larger than a
compiler, 200k+ lines)

Does not have to be trusted
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e
 Checker is very:

— Simple

— Stable

— Small
— Verified by humans very carefully

 Smallest known checker for HOL around 800
lines of C with no library support

— Included parser and simple Prolog interpreter
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Misleading Scales
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Trusted Computing Base
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Trusted C
 The only things that have to be trusted:
— Checker

— Statement of theorem

e Everything else (hints, library, theorem prover,
proof) does not

e Possible to get 3+ orders of magnitude difference
in size (1000x) between trusted and untrusted
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