
1 Program verification

We have covered a number of general topics so far in the course: propositional
logic, predicate logic, recursively defined sets, and modal logic. Each of these
topics might also be covered in a course on mathematical logic and you may be
wondering about the connection to computer science.

In fact, one of the most important—perhaps the single most important—
applications of formal logic is to computer science and related areas like electrical
engineering. You have already seen examples of using formal methods to solve
computational problems in sports tournament scheduling and network security
analysis. These applications were quite specific; here we will focus on applying
formal methods to a much more general problem: program verification.

The goal of program verification is to prove that some program of interest
has certain behavior. We have already seen some simple examples of this, such
as when we used induction to prove that the addition function on naturals is
commutative. That kind of proof is based on operational semantics—that is,
the execution behavior of the code (e.g., the add function). Proofs based on
operational semantics are quite useful but hard to generalize to larger programs.

Our goal now is to introduce an alternative technique for program verification
called Hoare logic. Hoare logic is a kind of modal logic that is specialized for
reasoning about program verification. We proceed by example; first we explain
a simple programming language and provide a model for computational state.
Next, we define a modal logic of assertions and provide an axiomatic semantics

for our language by defining series of Hoare rules. Finally, we show how to apply
those rules to reason about a number of example programs.

2 Programming language

We start by defining a very simple programming language. The language is too
brain-dead to make programming in it much fun, since it lacks lots of features
that make a programmer’s task easier (e.g., function calls). Still, it is Turing
complete—that is, it is capable of doing any computation that any other machine
is capable of doing, if the programmer is willing to work hard enough.

Expressions. We start with the notions of numerical and boolean expressions:

numerical expressions e ≡ z | x | e1+e2 | e1-e2 | e1*e2
boolean expressions b ≡ e1<=e2 | b1||b2 | !b

Numerical expressions e are inductive types with two kinds of base elements:
integers z or program variables x. The recursive cases of e are for the sum,
difference, and product of two other numerical expressions e1 and e2, respec-
tively. Boolean expressions have only one kind of base element, the comparison
of two numerical expressions e1 and e2; in addition they have two recursive
cases, for disjunction and negation. Notice that we are missing certain other
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obvious boolean expressions; it is convenient to define the following macros:

true ≡ 0<=0
false ≡ !true

b1&&b2 ≡ !((!b1)||(!b2))
e1==e2 ≡ (e1<=e2)&&(e2<=e1)
e1!=e2 ≡ !(e2==e2)
e1<e2 ≡ (e1<=e2)&&(e1!=e2)

These macros are as you would expect; notice that conjunction uses deMorgan.

Expression evaluation. Once we have an expression, the natural thing to do
is to evaluate it into some (numerical or boolean) value. For simple numerical
expressions like the following, this is not so hard:

3+(2*(0-2))

Clearly this expression evaluates to −1. The tricky point is that numerical
expressions can contain program variables, like this one (let’s call it ea):

ea ≡ m*(2+a)

Here m and a are two program variables. The value of the expression ea clearly
depends on the values of m and a: for example, if m = 2 and a = 3, then the
expression ea evaluates to 10. To help, we introduce the notion of a context :

context ρ ≡ X → Z

That is, a context ρ is a function1 from the set from the set of variable names
X to the set of integers Z. The context above (we’ll call it ρa) is defined as:

ρa(x) ≡











2 when x = m

3 when x = a

undefined otherwise

Given this notion of context, it is easy to define the numeric evaluator function
neval(ρ, e) that evaluates e in the context ρ by:

neval(ρ, e) ≡































z when e = z

ρ(x) when e = x

neval(ρ, e1) + neval(ρ, e2) when e = e1+e2

neval(ρ, e1)− neval(ρ, e2) when e = e1-e2

neval(ρ, e1)× neval(ρ, e2) when e = e1*e2

Hopefully our “overloading” of the arithmetical symbols is clear. When we
write neval(ρ, e1) + neval(ρ, e2) we mean to use the standard addition function

1We use the symbol “→” here to indicate the set of functions.
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on integers, whereas when we write e = e1+e2 we are indicating one of the
constructors of the inductively defined set of numerical expressions. Although
usually it is not hard to understand which symbol we mean in a given context,
we also use different fonts to help distinguish which meaning is indicated. Using
our previously defined expression ea and context ρa, it should be clear that

neval(ρa, ea) = 10

Boolean expressions are evaluated in much the same way; evaluation here
also needs a context so that numerical comparisons can be properly evaluated:

beval(ρ, b) ≡











neval(ρ, e1) ≤ neval(ρ, e2) when b = e1<=e2

beval(ρ, b1) ∨ beval(ρ, b2) when b = b1||b2

¬beval(ρ, b′) when b = !b′

Hopefully our notation here is straightforward. The beval function turns boolean
expressions into truth values like > and ⊥.

Commands. Now that we have defined the expressions (and their evaluation)
in our language, we are ready to define its commands. Here they are:

Syntax Command Description
skip skip Do nothing; nop
x := e assign Store e into the variable x

c1; c2 sequence Run c1 followed by c2
if (b) {c1} else {c2} if If b is true then run c1 else run c2
while (b) {c} loop As long as b is true then run c

We have only five commands; the result is an imperative language like C or
Java, but hugely simplified. One (very useful) way to think about commands is
that they transform a given context ρ1 into a succeeding context ρ2.

The first command, skip, has no effect—the succeeding context is equal to
the starting context. The second command, x := e (assignment), evaluates the
expression e and stores the result into the program variable x—the succeeding
context has a new value for variable x. The third command, c1; c2 (sequence),
runs the command c1 and then runs the command c2. The succeeding con-
text of c1 becomes the proceeding context of c2, and the succeeding context
of the entire sequence is the succeeding context of c2. The fourth command,
if (b) {c1} else {c2} (if/conditional), evaluates b; if the result is true then it
runs c1; otherwise it runs c2. The succeeding context of the conditional is the
succeeding context of whichever instruction ran. Finally, the fifth command,
while (b) {c} (while), evaluates b and if the result is true runs c, and then
loops around (evaluates b again, which may have a different value after running
c, and if b still evaluates to true then runs c again, before looping around again
and testing b. . . ). All of these commands should be familiar to you (except
maybe skip; if you want you can substitute the assignment x := x).
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Example 1. To illustrate our language, consider this simple program:

y := x;

while (2<=y)
{
y := y-2

}

What does this program (let us call it “Parity”) do? Parity first copies the
value of x into y and then sets up a loop that keeps going until the program
variable y is less than 2; until this is the case, it keeps decrementing y by 2. The
intention of the Parity program is that if the program variable x starts as an
even number, then when the program ends y will be equal to 0. On the other
hand, when x starts as an odd number, then when the program ends y will be
equal to 1. Thus, Parity seems to determine if a number is even or odd.

Example 2. Consider also the slightly more complicated “Factorial” program:

y := 1;
z := 0;
while (z!=x)

{
z := z+1;
y := y*z

}

Here we start by setting the program variables y and z to 1 and 0, respec-
tively. We then enter a loop where we increment z and multiply the value of y
by the new value of z; we exit the loop when z==x. The purpose of the Factorial
program is to compute x! into y—i.e., after the program runs we should have

y = 1× 2× . . .× (x − 1)× x

Exercise 1. (?) Prove that our language is Turing complete. The major
challenge is representing an infinite tape with a finite number of named variables.

3 Hoare Logic

Now that we have an understanding of our programming language, we turn
to the problem of program verification. The first question must be, what do
we mean by “proving that a program has certain behavior”? This is actu-
ally a pretty complicated question. For example, quicksort and mergesort are
two standard sorting algorithms, although they produce the same result given
the same input, they are not the same algorithm (e.g., they may use different
amounts of memory, or have different running times).
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We have to determine which properties of programs we are interested in
verifying. The most fundamental property of a program is neither its running
time nor its memory requirements, but rather whether it produces the output
you expect for a given input. Another way of saying that is, given some starting
context ρα that satisfies some initial property Pα, once the program terminates,
the ending context ρω satisfies some final property Pω. For example, in the
Parity program, we might like to verify that given any starting context, the
ending context must have y equal to 0 if x is even, and y equal to 1 if x is odd.

Assertions. You may be noticing a connection to previous material. The
truth or falsehood of a property depends on the current context. In other
words, we have a modal logic in which our set of worlds are our program contexts.
It is entirely reasonable to borrow notation used in modal logic as well and write:

ρα 
 Pα

to say that the initial property Pα holds in the initial context ρα, and

ρω 
 Pω

to say that the final property Pω holds in the final context ρω.
To define the logical operators in our modal logic we do our usual trick of

lifting operators from the metalogic. When we did this for propositional and
predicate logic, our metalogic was English, which was good because it provided
intuition but troublesome because natural language is often ambiguous. Now
that we understand propositional and predicate logic, however, they are per-
fectly reasonable candidates for our metalogic. We proceed as follows:

ρ 
 > ≡ > truth constant
ρ 
 ⊥ ≡ ⊥ falsehood constant
ρ 
 P ∧Q ≡ (ρ 
 P ) ∧ (ρ 
 Q) conjunction
ρ 
 P ∨Q ≡ (ρ 
 P ) ∨ (ρ 
 Q) disjunction
ρ 
 P → Q ≡ (ρ 
 P ) → (ρ 
 Q) implication

¬P ≡ P → ⊥ negation

On the left-hand side we give the new operators of our modal logic, and on the
right-hand side we provide their definitions using the operators of our metalogic
(predicate logic)2. To avoid massive symbol overload we use the same symbols
on both sides of the definitions but of course they are not the same.

We also want to have universal ∀ and existential ∃ quantifiers in our modal
logic. Fortunately, these too can be lifted straight from our metalogic:

ρ 
 ∀x P ≡ ∀x (ρ 
 P ) universal
ρ 
 ∃x P ≡ ∃x (ρ 
 P ) existential

Here we assume that x is free in P so that the quantifiers can provide meaning.

2This is exactly the same technique that was used in the most recent Coq homework and
you may find it useful to review how it was done there.
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It is often very useful to embed predicate logic formulas into modal formulas.
We define the plain lift operator 〈·〉 to do just that:

ρ 
 〈P 〉 ≡ P plain lift

That is, 〈P 〉 holds in any context ρ if and only if P is true in predicate logic.
All of the operators defined so far are either independent of the context ρ

(>, ⊥, 〈·〉) or simply “pass on” the given context to their subformulas. What
about formulas whose truth critically depends on the context? The simplest of
these allow us to lift numeric and boolean expressions into our assertion logic:

ρ 
 e ⇓ z ≡ neval(ρ, e) = z numeric evaluation
ρ 
 [b] ≡ beval(ρ, b) = > boolean evaluation

When e ⇓ z holds on some context ρ, then the evaluation of e in ρ is equal to
z; similarly, when [b] holds on some context ρ, then b evaluates to > in ρ.

You probably remember that when we define a modal logic we usually de-
fine not only a set of worlds but also a relation between worlds. Here we will
generalize this notion by allowing many different kinds of relations between
worlds—in other words, we have a multimodal logic. One important family of
world relations is the update relation U(x,n) defined as follows:

ρ U(x,n) ρ
′ ≡ ρ′ = [x 7→ n]ρ

In other words, two contexts ρ and ρ′ are related by U(x,n) if they are equal
everywhere other than at variable x, and the value of ρ′ at x is equal to n.

We can define the modal operator �U
(x,n) in the usual way by universally

quantifying over reachable worlds via this relation:

ρ 
 �U
(x,n)P ≡ ∀ρ′

(

(ρ U(x,n) ρ
′) → (ρ′ 
 P )

)

store update modality

In other words, if �U
(x,n)P holds on some context ρ, then P would hold if ρ were

updated so that variable x had value n. We can also define the related:

ρ 
 [x 7→ e]P ≡ ρ 
 �U
(x,neval(ρ,e))P store expression update modality

In this case, P would hold if ρ were updated so that variable x had the result
of evaluating e in ρ. We will see how this modality is used shortly.

What about other kinds of relations between worlds? There is a second very
important class of relations. Notice that the commands of our language
move from one world to the next by computing the subsequent context from the
proceeding one. For now we will avoid formal definitions of this modality, but
we will return to it next week when we study the soundness of Hoare logic.

Hoare rules. Now that we have defined a modal logic of properties/assertions,
we can return to the considering our goals for the verification. We are trying to
find a method for proving that from a context that satisfies some initial property
Pα, we reach a final context that satisfies some final property Pω .
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This is exactly the idea behind the Hoare triple. A Hoare triple, written

{P} c {Q}

is a way of saying that given any starting context that satisfies the property P ,
after running the command c, we will be in an ending context that satisfies the
property Q. Of course, the truth of a particular Hoare tuple depends very much
on the particular P , c, and Q! Some tuples seem pretty reasonable, such as:

{x ⇓ 5} x := x+1 {x ⇓ 6}

That is, starting from any context in which the expression x evaluates to 5, after
incrementing x, we will be in a context in which x evaluates to 6. In contrast,
the following tuple does not seem so reasonable:

{x ⇓ 5} x := x+1 {⊥}

In other words, this Hoare tuple is claiming that, given a starting context in
which x evaluates to 5, by incrementing x we reach no context at all (that is,
the increment command “blows up”—or maybe increment never terminates).
This seems pretty unlikely, since a reasonable intuition about the action of the
increment command indicates that such a context should exist.

Unfortunately, we are not quite in a position to prove that the second Hoare
tuple is invalid, since we have not pinned down the formal behavior of our
commands, or given a formal definition for Hoare tuples. These important topics
are the focus of next week’s lecture. Until then, we will proceed axiomatically:
first, we give a simple series of rules (axioms) justified by our intuition; second,
we show how to combine those axioms into proofs about whole programs.

Our first axiom is for skip; since skip is very simple (do nothing!), you
would expect that it would have a very simple axiom, and it does:

{P} skip {P}
Skip

In other words, the Skip axiom says that for any starting property P , given
an initial context ρ satisfying P , after running the command skip (which does
nothing), we reach a concluding context (which is just ρ again) that satisfies P .

The axiom for x := e (assignment) uses the store expression update modality:

{[x 7→ e] P} x := e {P}
Assignment

In other words, supposing that some property P would hold if the initial context
were updated so that variable x mapped to (the evaluated) expression e. Since
the assignment command does exactly that—transform the initial context into
a new context in which x now contains the (evaluated) expression e, it makes
perfect sense that P would hold in the concluding context.

You might notice that our Hoare axiom Assignment does not quite fit the
pattern of our initial (reasonable) example of a Hoare triple above. To validate
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that program, we will need another Hoare axiom called Consequence:

P → P ′ Q′ → Q {P ′} c {Q′}

{P} c {Q}
Consequence

In other worlds, suppose we have proved some Hoare tuple {P ′} c {Q′}, and
further suppose that we have some (possibly) stronger precondition P and some
(possibly) weaker postcondition Q. In that case, we are justified in concluding
{P} c {Q}: if we know that our initial satisfies the (stronger) P , we know that
it must also satisfy P ′; thus we know that the concluding state must satisfy the
(stronger) Q′, which implies that it also satisfies Q. Let’s see this in action:

(x ⇓ 5) →
(

[x 7→ x+1](x ⇓ 6)
)

(x ⇓ 6) → (x ⇓ 6)
{[x 7→ x+1](x ⇓ 6)} x := x+1 {x ⇓ 6}

Assignment

{x ⇓ 5} x := x+1 {x ⇓ 6}
Consequence

We have successfully verified the desired specification (precondition/postcondition)
pair. Notice that in order to use the Conqsequence rule we had to:

1. Prove that our preferred precondition (x ⇓ 5) is stronger than the pre-
condition required by Assignment ([x 7→ x+1](x ⇓ 6)). This proof is not
contained in the above derivations, but fortunately it is not very difficult.
If we are in a context where x has value 5, then if we move to a new
context in which x contains the value is one greater than the old value of
x—then we will be in a context in which x has value 6.

2. Prove that our desired postcondition is implied by the postcondition we
get from the implication rule; since they are the same that is very simple.

3. Apply the Assignment rule to get the underlying Hoare triple.

All of the previously rules only apply to program fragments with a single
command. One of the “big wins” of Hoare logic is that the rules can be composed
in a modular way. The first composition rule is Sequence:

{P} c1 {Q} {Q} c2 {R}

{P} c1; c2 {R}
Sequence

That is, from specifications of the subcommands c1 and c2, we can derive specifi-
cations for the combined sequence c1; c2. We apply Consequence if the obvious
postcondition for c1 does not exactly match the obvious precondition for c2.
Let’s take a look at an example of verifying a sequence3:

. . . exactly as above . . .

{x ⇓ 5} x := x+1 {x ⇓ 6}
Conseq.

. . . similar to above . . .
{x > 5} x := x+1 {x > 6}

Conseq.

{x ⇓ 6} x := x+1 {x > 6}
Conseq.

{x ⇓ 5} x := x+1; x := x+1 {x > 6}
Sequence

3Here we write, e.g., x > 6 as shorthand for ∃n
(

(x ⇓ n) ∧ 〈n > 6〉
)

.
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To avoid running into the margins in the proceeding derivation we omitted the
following side conditions of the lower-right application of Consequence:

(x ⇓ 6) → (x > 5) and (x > 6) → (x > 6)

Of course, these are very easy. Still, it is easy to observe that our derivations are
growing rapidly. We need to introduce a better notation to handle the problem.
The idea is that we will write the assertions in between the lines of the program,
applying the natural rules to get us from on assertion to the next. For example,
here is the same verification in the new format:

{x ⇓ 5}
{[x 7→ x+1](x ⇓ 6)}
x := x+1;
{x ⇓ 6}
{x > 5}
{[x 7→ x+1](x > 6)}
x := x+1
{x > 6}

Clearly this kind of format is more compact than full proof-tree derivations. In
fact, it is (usually) not very hard to decode what is going on, since there are
only two possibilities for getting from assertion to the next.

In the first case, applicable whenever there are two assertions in a row, the
rule of consequence has been applied to get from one assertion to the next. If
there are more than two assertions in a row, then consequence has been applied
repeatedly, usually because the verifier wants to provide additional clarity in his
proof. For example, the first two lines of the verification above are assertions,
and to get from the first to the second we must apply Consequence. This means
that a side proof, usually omitted since it is usually very easy, must show that
the preceding assertion must imply the succeeding assertion.

In the second case, applicable whenever two assertions are separated by a
single command, the underlying proof rule must be applied. Here, since both
commands are assignments, the Assignment rule has been applied. The Sequence
rule is implied by the way the notation proceeds from one command to the next.

There are only a few axioms remaining. Let us examine the rule for if:

{P ∧ [b]} c1 {Q} {P ∧ ¬[b]} c2 {Q}

{P} if (b) {c1} else {c2} {Q}
If

This rule is somewhat similar to the disjunction-elimination rule from proposi-
tional logic. That is, if we can show that starting from a context that satisfies
P , then running either c1 or c2 leaves us in a context that satisfies Q, then
we can conclude that the entire conditional (if statement) has postcondition Q.
The only wrinkle is that while verifying c1 we are allowed to assume that the
boolean was true ([b]) when verifying the postcondition Q; while verifying c2 we
are allowed to assume that the boolean was not true (¬[b]).
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To demonstrate the If rule, consider the following verification:

{(x ⇓ 0) ∨ (x ⇓ 1)}
if (x==0)
{
{
(

(x ⇓ 0) ∨ (x ⇓ 1)
)

∧ [x==0]}
{x ⇓ 0}
{[x 7→ x+2](x ⇓ 2)}
x := x+2
{x ⇓ 2}

} else {
{
(

(x ⇓ 0) ∨ (x ⇓ 1)
)

∧ ¬[x==0]}
{x ⇓ 1}
{[x 7→ x+1](x ⇓ 2)}
x := x+1
{x ⇓ 2}

}
{x ⇓ 2}

Notice we carefully distributed the precondition (plus [b]/¬[b]) to both branches
of the if, and ensured that both branches reached the same postcondition.

Finally, let us consider the while command. Here we have some decisions
to make. Let us first present the following (perfectly reasonable) rule:

{P ∧ [b]} c {P}

{P} while (b) {c} {P ∧ [¬b]}
While

Suppose the loop body c can be verified with precondition P (plus the fact
that the boolean b evaluated to true) and postcondition P . In that case, it is
reasonable to conclude that if we start the while from precondition P , then
if/when it finally terminates, it will end with postcondition P plus the fact that
the boolean b finally evaluated to false. Here is why: the loop body cannot take
us “out of” P ; in other words, P is an invariant of the loop. Therefore, no
matter how many times we go around the loop, P will remain true.

This raises all kinds of tricky questions. The first is, how do we discover
the “right” loop invariant P for a given situation? In general, this is a very
hard problem and is an active research problem decades after Hoare logic was
developed. We suggest an iterative approach: try some invariant that you think
might work and perform the verification. If the Hoare proof breaks somewhere,
then take a guess at how the invariant might be changed to fix the break, and
start the verification over. Continue until you have found something that works.

To see this rule in action, let’s try to verify the Parity function with precon-
dition > (make no restrictions on the starting context) and postcondition

(

(y ⇓ 0) ∧ even(x)
)

∨
(

(y ⇓ 1) ∧ odd(x)
)

Note that to avoid large formulas, we will start to use abbreviations like x = y
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{>}
{[y 7→ x](x = y)}
y := x;

{x = y}
{∃n

(

x = y+ (2 × n)
)

}
while (2<=y)
{

{
(

∃n
(

x = y+ (2 × n)
)

)

∧ [2<=y]}

{∃n
(

x = y+ (2× n)
)

}

{[y 7→ y-2]
(

∃n
(

x = y+ (2× n)
)

)

}

y := y-2
{∃n

(

x = y+ (2× n)
)

}
}

{
(

∃n
(

x = y+ (2× n)
)

)

∧ ¬[2<=y]}

{
(

∃n
(

x = y+ (2× n)
)

)

∧ (y < 2)}

{. . .uh oh . . .}
{
(

(y ⇓ 0) ∧ even(x)
)

∨
(

(y ⇓ 1) ∧ odd(x)
)

}

Figure 1: Attempted verification for Parity

instead of ∃n (x ⇓ n ∧ y ⇓ n), even(x) instead of ∃n
(

x ⇓ n ∧ ∃m 〈m+m = n〉
)

,
and so forth. We give the attempted verification in Figure 1.

The verification goes through just fine until the very end, when we reach
the “uh oh”. The problem is that the preceding assertion does not imply the
desired postcondition. A little examination leads to the reason: y is an integer;
what happens if y is negative? In that case the final conclusion will be false,
since y will neither equal 0 or 1. It turns out that y will be negative if the
initial value of x is negative. This is exactly the kind of mistake that is very
easy to make when thinking about a program informally, and exactly the kind
of mistake that a formal technique like Hoare logic will help you find.

We need to fix our specification by strengthening the precondition (e.g., to
x ≥ 0) or weakening the postcondition (e.g., to >). Here the right choice is to
strengthen the precondition, yielding the following flawless given in Figure 2.
We have put boxes around the formulas that are different in the revised proof;
these track the fact that y is nonnegative during the program’s execution. At
the penultimate step we are able to combine the fact that y is nonnegative and
the fact that y < 2 to conclude that y is either 0 or 1. Note we carefully ensure
we reach the loop invariant at the end of the loop body.

Verifying Factorial. To give another example, let us reconsider the Factorial
program. We would like to show that given any starting context, after the
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{ x ≥ 0 }

{[y 7→ x](x = y ∧ y ≥ 0 )}

y := x;

{x = y ∧ y ≥ 0 }

{∃n
(

x = y+ (2 × n) ∧ y ≥ 0
)

}

while (2<=y)

{

{
(

∃n
(

x = y+ (2 × n)
)

∧ y ≥ 0
)

∧ [2<=y]}

{∃n
(

x = y+ (2× n)
)

∧ y ≥ 2 }

{[y 7→ y-2]
(

∃n
(

x = y+ (2× n)
)

∧ y ≥ 0
)

}

y := y-2

{∃n
(

x = y+ (2× n)
)

∧ y ≥ 0 }

}

{
(

∃n
(

x = y+ (2× n)
)

∧ y ≥ 0
)

∧ ¬[2<=y]}

{
(

∃n
(

x = y+ (2× n)
)

∧ y ≥ 0
)

∧ (y < 2)}

{
(

(y ⇓ 0) ∧ even(x)
)

∨
(

(y ⇓ 1) ∧ odd(x)
)

}

Figure 2: Correct verification for Parity

program terminates the value of y will be equal to the value of x!—that is,

y = 1× 2× . . .× (x − 1)× x

This is a little bit trickier to precisely specify than it might appear. The problem
is that the factorial function is usually defined on naturals, but our program
variables are integers. What do we mean when we say y = x! if x is negative?

A little thought indicates several reasonable possibilities:

1. Define z! to be −1 if z < 0

2. Define z! to be equal to (−z)! when z < 0 (that is, take the absolute value
before calculating factorial)

3. Define z! to be equal to −((−z)!) when z < 0 (that is, take the absolute
value before calculating factorial, then take the inverse)

4. Say that z! is undefined when z < 0, and so when we say y = x! we must
include a side condition that y ≥ 0

12



{>}

{[y 7→ 1](y ⇓ 1)}

y := 1;

{y ⇓ 1}

{[z 7→ 0](y ⇓ 1 ∧ z ⇓ 0)}

z := 0;

{y ⇓ 1 ∧ z ⇓ 0}

{y = z!}

while (z!=x)

{

{(y = z!) ∧ [z!=x]}

{
(

y× (z+ 1)
)

= (z+ 1)!}

{[z 7→ z+1]
(

(y× z) = z!
)

}

z := z+1;

{(y× z) = z!}

{[y 7→ y*z](y = z!)}
y := y*z

{y = z!}

}

{(y = z!) ∧ ¬[z!=x]}

{(y = z!) ∧ z = x}

{y = x!}

Figure 3: Verification for Factorial

The key point here is that if we want to provide a precise specification for
Factorial then we need to do something. In this case, any of the above solutions
would be fine—as long as you clearly communicate your choice and what you
mean by your notation. On a whim we will pick option (2), formalized as follows:

z! =











1 when z = 0

z × ((z − 1)!) when z > 0

(−z)! when z < 0

Using this definition, we can formalize our desired postcondition as follows:

y = x! ≡ ∃n
(

y ⇓ n ∧ x ⇓ (n!)
)

With this background material out of the way, in Figure 3 we verify Factorial
given the precondition > and postcondition y = x!.

13



{>}

while (true)

{
{> ∧ [true]}

skip

{> ∧ [true]}

{>}

}

{> ∧ ¬[true]}

{⊥}

Figure 4: Verifying that an infinite loop can have postcondition ⊥.

Exercise 2. (?) The verification proof in Figure 3 is a standard proof from the
literature used to teach Hoare logic, and is contained in a popular introductory
textbook on formal methods. Unfortunately, it contains a flaw. What is it?

4 Total correctness

Sharp eyes might wonder about a problem with the While rule presented above.
What happens if the program never terminates? In fact, using the While rule it
is possible to get some strange results. Reexamine the verification for Factorial
in Figure 3. Suppose we run this program from an initial context in which x is
negative. In this case, the while loop will never terminate, since z starts at 0
and increments until it hits x—which it never will if x is negative.

We need to refine our understanding of what we mean by our Hoare triple
{P} c {Q}. The postcondition Q need only hold if the command c termi-
nates. If c never terminates, then we never reach a final context in which Q

is supposed to hold, and so it does not actually matter what Q is. Program
logics that do not guarantee termination are called logics of partial correctness.
As a more extreme example of the cost/benefit of using a logic of partial cor-
rectness, consider the verification in Figure 4 that a simple infinite loop can be
specified with postcondition ⊥. Actually a postcondition of ⊥ for a loop is not
so confusing, since it means that the loop must never have terminated. The
more reasonable-looking postcondition of the Factorial program is more prob-
lematic, since someone looking at the specification might not realize that the
precondition of > is not enough to guarantee that Factorial will terminate.

The solution is to develop a Hoare logic of total correctness. We write4

[P ] c [Q]

4We used a different notation to separate partial and total correctness in the lectures;
either is fine as long as you are consistent.
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[P ] skip [P ]
TSkip

[[x 7→ e] P ] x := e [P ]
TAssignment

P → P ′ Q′ → Q [P ′] c [Q′]

[P ] c [Q]
TConsequence

[P ] c1 [Q] [Q] c2 [R]

[P ] c1; c2 [R]
TSequence

[P ∧ [b]] c1 [Q] [P ∧ ¬[b]] c2 [Q]

[P ] if (b) {c1} else {c2} [Q]
TIf

Figure 5: Hoare axioms for total correctness (except for while)

to mean that given any starting context ρα that satisfies P , running the com-
mand c is guaranteed to terminate in some context ρω that satisfies Q. Although
we are not yet in a position to prove it, logics of total correctness are stronger
than logics of partial correctness, in the sense that

[P ] c [Q]

{P} c {Q}
Weaken

A common but informal way to make the same point is that

Partial Correctness + Termination = Total Correctness

Except for the While rule, the axioms of a Hoare logic of total correctness are
similar to the axioms of a Hoare logic of partial correctness; we give these rules
in Figure 5. The difference is that we require that our subcommands terminate
(e.g., in TSequence we require [P ] c1 [Q] instead of {P} c1 {Q}), and produce a
guarantee of termination (e.g., [P ] c1; c2 [R] instead of {P} c1; c2 {R}).

When we get to developing a rule for the while (b) {c} command, things
are a bit trickier. As we have observed, the previous rule does not guarantee
termination, and merely knowing that the subcommand c terminates does not
guarantee that the loop itself terminates. We will have to do something fancier.

A termination measure t is a function from contexts into the natural num-
bers. Suppose F is a formula in logic that has t as a free variable; then we
can define an assertion t@F that evaluates F after substituting the value of the
termination measure (on the current context) for t as follows:

ρ 
 t@P ≡ [t 7→ t(ρ)]P

This may be a bit confusing, so let us consider an example. Suppose our example
termination measure ta is the absolute value of program variable a:

ta(ρ) ≡ |ρ(a)|
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Recall from earlier that in our example context ρa, variable a had value 3.
Suppose our example formula is Fa ≡ ta < 5. Then we can simplify as follows:

ρa 
 ta@Fa = [ta 7→ ta(ρa)]Fa = [ta 7→ 3](ta < 5) = 3 < 5

Since 3 < 5, we conclude that on ρa, ta@Fa holds.
Given this idea of termination measures, we are ready to define the Hoare

rule of total correctness for the while command as follows:

∀n
(

[P ∧ [b] ∧ t@(t = n)] c [P ∧ t@(t < n)]
)

[P ] while (b) {c} [P ∧ ¬[b]]
TWhile

This may look scary but it is not that bad. To conclude that the loop terminates,
we require a somewhat stronger precondition above the bar. We need to prove
that for all n : N, if we start in a context that satisfies P , and in which b has
evaluated to true, and in which the termination measure t is equal to n, then
c will terminate in a context that satisfies P and in which the termination
measure t has strictly decreased. The termination argument is roughly
as follows: we start in some context ρ, in which the termination measure t

is equal to some n. If the loop is finished (b evaluates to false), then we are
done; if not, then our premise guarantees that executing c will strictly decrease
the termination measure, and so we loop around and try again. Since the
naturals are bounded below by 0, we know that we cannot strictly decrease the
termination measure forever, so at some point we must terminate.

Using the TWhile rule can be tricky since you need to develop termination
measures that decrease over each loop body; this is a major reason that we
are willing to use logics of partial correctness, since at least they provide some
guarantees without being quite as hard to use. In fact, there are many programs
for which no-one has been able to figure out a reasonable termination measure.

Still, sometimes it is a very nice to be able to conclude that a program
terminates; in Figure 6 we give an example of using the TWhile rule to prove the
total correctness of the Parity function using the termination measure t ≡ |y|.
Notice how we introduce a fresh metavariable n in the body of the loop; the
value of this metavariable is constant as we go around the loop so that we can
verify that the termination measure has decreased at the end. We highlight the
parts of the formulas that verify that the termination measure decreases.

5 Soundness of Hoare Logic

We have presented a series of commands, and two Hoare logics (one of partial
and one of total correctness) that can be used to verify programs using those
commands. Although we have tried to argue why the rules of those logics
are reasonable, you may not be convinced that they are. This is a reasonable
concern since it is quite easy to write down reasonable-looking Hoare rules that
turn out to be unsound; for example, consider the following

[P ∧ [b]] c [P ]

[P ] while (b) {c} [P ∧ ¬[b]]
BadTWhile
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[x ≥ 0]

[[y 7→ x](x = y ∧ y ≥ 0)]

y := x;

[x = y ∧ y ≥ 0]

[∃n
(

x = y+ (2× n) ∧ y ≥ 0
)

]

while (2<=y)

{

[
(

∃n
(

x = y+ (2 × n)
)

∧ y ≥ 0
)

∧ [2<=y] ∧ t@(t = n) ]

[∃n
(

x = y+ (2 × n)
)

∧ y ≥ 2 ∧ |y| = n ]

[[y 7→ y-2]
(

∃n
(

x = y+ (2 × n)
)

∧ y ≥ 0 ∧ y = n− 2
)

]

y := y-2

[∃n
(

x = y+ (2 × n)
)

∧ y ≥ 0 ∧ y = n− 2 ]

[∃n
(

x = y+ (2 × n)
)

∧ y ≥ 0 ∧ |y| < n ]

[∃n
(

x = y+ (2 × n)
)

∧ y ≥ 0 ∧ t@(t < n) ]

}

[
(

∃n
(

x = y+ (2× n)
)

∧ y ≥ 0
)

∧ ¬[2<=y]]

[
(

∃n
(

x = y+ (2× n)
)

∧ y ≥ 0
)

∧ (y < 2)]

[
(

(y ⇓ 0) ∧ even(x)
)

∨
(

(y ⇓ 1) ∧ odd(x)
)

]

Figure 6: Totally correct verification for Parity using t = |y|
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This is a seemingly-reasonable attempt to directly lift the While rule into the
realm of total correctness. Of course, as discussed above, it fails: just because
a loop body always terminates does not mean that the loop itself always termi-
nates. Just consider the program while (true) {skip}!

In fact, as soon as one starts making a serious attempt to generalize our
Hoare logics to more realistic languages (e.g., with memory, input/output, con-
currency), one needs to start writing down Hoare rules to reason about those
new features. Since those new features are very complicated, it rapidly becomes
very hard to be confident in their associated Hoare rules.

What is needed is a semantic model, and associated soundness proof, of
Hoare logic. That is, we must provide a formal definition to the Hoare triple
(the semantic model) and then prove each of our Hoare rules using our definition
(the soundness proof). This is our remaining task today.

Operational semantics. A precise definition of the Hoare triple depends
on a precise definition for how our language operates—in other words, on our
language’s operational semantics. To provide that operational semantics, we
will define a three-place step relation of the form:

c ` ρ ρ′

Here c is a command and ρ is a starting context; meanwhile, ρ′ is an end-
ing context—that is, the context that results from running c. Technically, the
relation is defined as the least relation5 satisfying the seven rules given below.

The eSkip rule formalizes the execution behavior of the skip command:

skip ` ρ ρ
eSkip

That is, given a starting context ρ, evaluating the skip command does nothing
and returns the original context ρ. More interesting is the eAssign rule:

x := e ` ρ [x 7→ neval(ρ, e)]ρ
eAssign

In words, executing the command x := e transforms the starting context ρ into a
new context ρ′ that is equal to ρ everywhere except at x, where ρ′ now contains
the result of evaluating e. Hopefully this matches your intuition for x := e.

We now turn to the commands that contain subcommands. The first is the
eSequence rule, which specifies how two commands should be run in sequence:

c1 ` ρ1  ρ2 c2 ` ρ2  ρ3

c1; c2 ` ρ1  ρ3
eSequence

To determine the result of c1; c2, you take the starting context ρ1 and run c1
until it results in the intermediate context ρ2. Then, you take ρ2 and run c2
until it results in the final context ρ3, which is the result of the entire sequence.

5i.e., the relation is inductively defined.
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We need two rules to define the behavior of if (b) {c1} else {c2}: one when
b is true and the other when b is false. Here they are:

beval(ρ, b) = > c1 ` ρ1  ρ2

if (b) {c1} else {c2} ` ρ1  ρ2
eIf1

beval(ρ, b) = ⊥ c2 ` ρ1  ρ2

if (b) {c1} else {c2} ` ρ1  ρ2
eIf2

The eIf1 rule say that if the boolean expression b evaluates to true (>) in the
starting context ρ1, then the result of the entire conditional command (if) is
found by running the first command c1. The eIf2 rule covers the other case,
when b evaluates to false (⊥); in this case we run the second command c2.

Similarly, we need two rules to define the behavior of the while loop:

beval(ρ, b) = ⊥

while (b) {c} ` ρ ρ
eWhile1

beval(ρ, b) = > c ` ρ1  ρ2 while (b) {c} ` ρ2  ρ3

while (b) {c} ` ρ1  ρ3
eWhile2

The eWhile1 rule is straightforward enough: if the boolean expression b evaluates
to false, then the loop will end and return the starting context ρ. The eWhile2

rule is a little more complicated, and has three premises. The first premise is
quite simple: b must evaluate to true. The second premise says that we must
then run the command c in the initial context ρ1 to get to an intermediate
context ρ2; this is very similar to what we do in the eSequence, eIf1, and eIf2

rules: “recursing” on a subcommand. The third premise is the particularly
interesting one: here we are not recursing on a subcommand, since we take the
intermediate context ρ2 and determine what final context ρ3 the original loop
while (b) {c} will produce. Since the step relation is inductively defined, we
will only be able to recurse some finite number of times—eventually we must
hit the “base case” of eWhile1. The step relation will only be defined for
loops that terminate. Consider the infinite loop “while (true) {skip}”;
given any starting context ρ, there is no context ρ′ such that

while (true) {skip} ` ρ ρ′

On the other hand, for terminating loops, the step relation computes the ex-
pected final context by “unrolling” the loop the required finite number of times.

All of this may seem a bit odd: essentially, we are formally saying that our
programs have no semantics (that is, do not execute!) if they would run forever
in the niëve intuition. Indeed, for more complicated programming languages,
this style of step relation—called big-step—is inadequate. A big step operational
semantics, like the one given above, computes the result of the entire program
in one “big step”: that is, the step relation takes a command, before-state,
and after-state. This runs into lots of problems when we care about what the
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program does along the way, such as input and output (to/from e.g., keyboard,
mouse, screen, printer, network). To reason about those kinds of languages, we
need a more complicated small-step semantics, where each time we apply the
step relation we compute the result of some simple command; in a small-step
semantics, the step relation takes an input command and context, as we do
here, but outputs both a next command and a next context6. For example, a
small-step rule for the skip command might look as follows:

(ρ, skip; c) (ρ, c)

If we ran the program for another step using the small-step semantics, it would
start working on the command c. In a small-step semantics, infinite loops are
easy to model and reason about since we can just keep on stepping forever.

Both partial and total Hoare triples only care about the final context if
the program terminates. Therefore, it does not matter if we cannot model
nonterminating programs with our semantics, and so for our simple language
big step semantics are adequate (and simpler than small-step).

Exercise 3. Prove that the big-step relation defined by the seven rules eSkip—
eWhile2 is deterministic. That is, if c ` ρ1  ρ2 and c ` ρ1  ρ′2, then
ρ′1 = ρ′2. Hint: do induction on the c ` ρ ρ′ relation.

Exercise 4. Define a small-step operational semantics for our language. On
terminating programs, this language should result in the same final context as
the big-step semantics. You may find it convenient to require that all programs
have a final skip command to signal when the small-step relation can stop.

Semantics of the Hoare triple. We turn to the final topic in our study of
Hoare logic, which is providing a model for the Hoare triples themselves: that
is, what does {P} c {Q} mean? Actually, almost all of the heavy lifting has
already been done. We begin by drawing on our connection to modal logic.

Our step relation, given a fixed command c, relates two worlds: the pre- and
post-contexts of c. Thus, we define a relation Sc on contexts as follows:

ρ Sc ρ′ ≡ c ` ρ ρ′

Now that we have defined a relation on worlds, we can define the modal operators
� and ♦ (specialized to S and command c) in exactly the usual way:

ρ 
 �S
c P ≡ ∀ρ′

(

ρ Sc ρ
′ → ρ′ 
 P

)

ρ 
 ♦Sc P ≡ ∃ρ′
(

ρ Sc ρ
′ ∧ ρ′ 
 P

)

What do these operators mean? If ρ 
 �S
c P holds, then P will hold in any final

context reachable from ρ by running the command c—that is, if we run c, P

6Another option might be to define the big-step relation coinductively.
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will hold. In contrast, if ρ 
 ♦Sc P holds, then it is possible to run c from the
context ρ, and P will hold on the resulting context. Since our semantics do not
allow us to run nonterminating programs, sometimes it is not possible to run c.

Now that we have expressed our modal operators, the definitions of the
Hoare triples for partial and total correctness are easy to state:

{P} c {Q} ≡ ∀ρ
(

ρ 
 (P → �S
cQ)

)

[P ] c [Q] ≡ ∀ρ
(

ρ 
 (P → ♦Sc Q)
)

Pleasingly, the definitions differ only by the modality they utilize. {P} c {Q}
means that given any context ρ on which P holds, Q will hold if we execute c. In
contrast, [P ] c [Q] means that given any context ρ, if P holds on ρ, then we can
execute c, and afterwards Q will hold. Since our semantics is only defined on
terminating programs, a guarantee that c can run implies that c will terminate.

Exercise 5. Prove that total correctness is strictly stronger than partial cor-
rectness. That is, show that [P ] c [Q] implies {P} c {Q}. Note that you will
need the fact that our step relation is deterministic (see Exercise 3).

Exercise 6. (?) In the context of a nondeterministic semantics, our definition
of Hoare triples for total correctness is not stronger than our definition for Hoare
triples for partial correctness. Give a reasonable definition for Hoare triples of
total correctness that is stronger in such a context.

The final task is to prove the various Hoare axioms given earlier (Skip,
Assignment, Consequence, . . . , While, TSkip, TAssignment, TConsequence, . . . ,
TWhile) from the definitions. Most of these are quite simple.

Exercise 7. Prove all of the Hoare rules of partial correctness except While.
You cannot just combine your proofs for exercises 5 and 8 since the premises of
the rules of partial correctness allow nonterminating subcommands. You must
prove the rules directly (but none of them should require a lots of work).

Exercise 8. Prove all of the Hoare rules of total correctness except TWhile.
Again, none of them, individually, should require lots of work.

Exercise 9. (?) Prove the While rule of partial correctness.

Exercise 10. (?) Prove the TWhile rule of total correctness. Hint: do induc-
tion on the value of the termination measure.
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