
Propositional Logic

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

August 26, 2010

Generated on Tuesday 31 August, 2010, 16:54

1 Motivation

In traditional logic, terms represent sets, and therefore, propositions are lim-
ited to stating facts on sets. We have no straightforward way of formulating
propositions such as:

• “1 + 1 = 3”

• “The sun is shining today.”

• “Earth has more mass than Mars.”

In this section, we therefore generalize propositions to state anything we like,
leading to the notion of propositional atoms, described in the following section.

For traditional logic, we have considered particular forms of arguments that
combine propositions. For example,

If p1 then p2.

We would like to study in what ways propositions can be combined into argu-
ments, which will also be propositions. This leads us to the notion of logical
operators in Section 3. Using these operators, we will define formulas in Sec-
tion 4 and their semantics in Section 5. Section 6 gives a proof theory, and
Section ?? states its soundness and completeness.

2 Propositional Atoms

We allow any kind of proposition, for example “The sun is shining today”, as
long as in a particular context (model), we can unambiguously state whether the
proposition holds or not. It is convenient to give short names to propositions,
such as p, q, p1, etc, instead of sentences like “The sun is shining today”. More
formally, we fix a set A of propositional atoms.

1

In Coq, it is convenient to identify atoms with numerals.

Inductive Num : Type :=

| Zero : Num

| Succ : Num -> Num.

Definition Atom : Type := Num.

This provides us with a sufficiently large (namely countably infinite) supply of
propositional atoms. When we need to, we can define Coq variables to refer
to particular atoms, such as

Definition p_0 : Atom := Zero.

Definition p_1 : Atom := Succ Zero.

Definition p_2 : Atom := Succ (Succ Zero).

How can we give meaning to propositional atoms? As in traditional logic, a
model assigns truth values to each atom. Thus a model for a propositional logic
for the set A of atoms is a mapping from A to {T, F}. Models for propositional
logic are called valuations.

Example 1. Let A = {p, q, r}. Then a valuation v1 might assign p to T , q
to F and r to T . Thus, more formally, pv1 = T, qv1 = F, and rv1 = T . To
emphasize that v1 is a function, we also write v1(p) instead of pv1 .

Another valuation v2 might assign p to F , q to F and r to F , more formally
v2(p) = v2(q) = v2(r) = F .

In Coq, we define two truth values as constants of the type Bool, as follows.

Record Bool : Type :=

| T : Bool

| F : Bool.

Then a valuation can be defined as a function from atom to Bool.

Definition Valuation : Type := Atom -> Bool.

Definition exampleValuation : Valuation :=

fun a : Atom => match a with

| Zero => T (* p_0 *)

| Succ Zero => F (* p_1 *)

| Succ (Succ Zero) => T (* p_2 *)

| _ => F (* all other *)

end.

2

3 Constructing Propositions

We would like to build larger propositions, such as arguments, out of smaller
ones, such as propositional atoms. We do this using operators that can be
applied to propositions, and yield propositions.

3.1 Unary Operators

Let us consider a unary operator op for propositions. We said that a valuation
v unambiguously fixes the meaning of each propositional atom. If the meaning
of a propositional atom p is fixed to v(p)—T or F—as given by the chosen
valuation v, then the meaning of op p should depend only on v(p). For a unary
operator, there are only four choices of such a meaning, and thus four possible
unary operators:

1. (op(p))v = F if pv = F and (op(p))v = F if pv = T

2. (op(p))v = T if pv = F and (op(p))v = T if pv = T

3. (op(p))v = F if pv = F and (op(p))v = T if pv = T

4. (op(p))v = T if pv = F and (op(p))v = F if pv = T

The first and second do not depend on their argument, and thus the argument
can be omitted, leading to them being nullary operators, as described in the
next section.

The third one is the identity function ((op(p))v = pv) and therefore can be
omitted.

The fourth operator negates its argument, T becomes F and F becomes T .
Thus, we call this operator negation, and write ¬p (pronounced “not p”).

3.2 Nullary Operators

We have seen that an operator assigns T to its argument, regardless of the
valuation, and regardless of the argument. Since it does not depend on its
argument, we may omit any argument. This means that it is just a constant.
We denote the nullary operator whose value is T in every valuation by the
symbol >.

Similarly, we denote the nullary operator, whose value is F in every valuation
by the symbol ⊥.

3.3 Binary Operations

For binary operations, we have the following 16 choices.

3

p q op1(p, q) op2(p, q) op3(p, q) op4(p, q)
F F F F F F
F T F F F F
T F F F T T
T T F T F T

p q op5(p, q) op6(p, q) op7(p, q) op8(p, q)
F F F F F F
F T T T T T
T F F F T T
T T F T F T

p q op9(p, q) op10(p, q) op11(p, q) op12(p, q)
F F T T T T
F T F F F F
T F F F T T
T T F T F T

p q op13(p, q) op14(p, q) op15(p, q) op16(p, q)
F F T T T T
F T T T T T
T F F F T T
T T F T F T

We single out three of these 16 operators, and give them particular names:

op2 : The operator application op2(p, q) evaluates to T when p evaluates to T
and q evaluates to T , and F otherwise. Therefore, we say “p and q”. This
operator is called conjunction, and traditionally, the symbol ∧ is used to
denote it.

p ∧ q := op2(p, q)

op8 : The operator application op8(p, q) evaluates to T when p evaluates to T
or q evaluates to T , and F otherwise. Therefore, we say “p or q”. This
operator is called disjunction, and traditionally, the symbol ∨ is used to
denote it.

p ∨ q := op8(p, q)

op14 : The operator application op14(p, q) evaluates to T when p evaluates to
F or q evaluates to T , and F otherwise. Therefore, we say “p implies
q”. This operator is called implication, and traditionally, the symbol→ is
used to denote it.

p→ q := op14(p, q)

4

4 Syntax of Propositional Logic

In propositional logic, we would like to apply operators not only to atomic
propositions, but also to the result of applying other operators. This means that
our language of well-formed formulas in propositional logic should be inductively
defined as follows.

Definition 1. For a given set A of propositional atoms, the set of well-formed
formulas in propositional logic is the least set F that fulfills the following rules:

• The constant symbols ⊥ and > are in F .

• Every element of A is in F .

• If φ is in F , then (¬φ) is also in F .

• If φ and ψ are in F , then (φ ∧ ψ) is also in F .

• If φ and ψ are in F , then (φ ∨ ψ) is also in F .

• If φ and ψ are in F , then (φ→ ψ) is also in F .

Example 2. The expression

(((¬p) ∧ q)→ (> ∧ (q ∨ (¬r))))

is a well-formed formula in propositional logic.

A more compact definition of the syntax of propositional logic is given in Backus
Naur Form (BNF), as follows:

φ ::= p | ⊥ | > | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ)

where p stands for any atomic proposition.

In Coq, we use the keyword Inductive to introduce the inductively defined
set PropFormula.

Inductive PropFormula : Type :=

| propTop : PropFormula

| propBot : PropFormula

| propAtom : Atom -> PropFormula

| propNeg : PropFormula -> PropFormula

| propConj : PropFormula -> PropFormula -> PropFormula

| propDisj : PropFormula -> PropFormula -> PropFormula

| propImpl : PropFormula -> PropFormula -> PropFormula.

Definition exampleFormula : PropFormula :=

propDisj (propNeg (propAtom p_2))

(propImpl (propConj (propAtom p_1) propTop)

propBot).

5

The grammar above is non-ambiguous. We can show that a particular formula
is well-formed by looking for its outermost operator (the one belonging to the
outermost parentheses). There is only one rule applicable for this operator, and
thus we know whether the formula is an atom, a negation, a conjunction, a
disjunction, or an implication. This reasoning is called the inversion principle.
We then apply the same process recursively to the arguments of the operator.

This leads to a hierarchical structure for every formula, where the outermost
operator appears at the root, and its arguments are written as branches below
it. This structure is called the parse tree of the formula.

Example 3. The formula

(((¬p) ∧ q)→ (> ∧ (q ∨ (¬r))))

has the following parse tree. →

∧

¬

p

q

∧

> ∨

q ¬

r

A formula ψ whose root operator appears below the root operator of a formula
φ is called a sub-formula of φ. In the example above, (q∨ (¬r)) is a sub-formula
of (> ∧ (q ∨ (¬r))). We define that every formula is a sub-formula of itself.

Exercise 1. List all sub-formulas of the formula in Example 3.

The definition of well-formed formulas surrounds every operator with paren-
theses, which leads to a proliferation of symbols and makes formulas unneces-
sarily hard to read. As in arithmetic, where ∗ binds more tightly than +, we
introduce the following conventions.

Convention 1. The negation symbol ¬ binds more tightly than ∧ and ∨, and ∧
and ∨ bind more tightly than→. Moreover, → is right-associative: The formula
p→ q → r is read as p→ (q → r).

5 Semantics of Propositional Logic

Recall that in propositional logic, a model is a valuation that maps every propo-
sitional atom to one of the truth values T or F . In order to give meaning to
well-formed propositional formulas, we need to be able to apply such a valuation
to a formula. This process is called evaluation.

In order to define evaluation, we introduce the following functions on truth
values.

6

Definition 2. The function \ : {F, T} → {F, T} is given in the following truth
table:

B \B
F T
T F

Definition 3. The function & : {F, T} × {F, T} → {F, T} is given in the
following truth table:

B1 B2 B1&B2

F F F
F T F
T F F
T T T

Definition 4. The function |: {F, T}×{F, T} → {F, T} is given in the following
truth table:

B1 B2 B1 | B2

F F F
F T F
T F F
T T T

Definition 5. The function ⇒: {F, T} × {F, T} → {F, T} is given in the fol-
lowing truth table:

B1 B2 B1 ⇒ B2

F F T
F T T
T F F
T T T

Definition 6. The result of evaluating a well-formed propositional formula φ
with respect to a valuation v, denoted v(φ) is defined as follows:

• If φ is the constant ⊥, then v(φ) = F .

• If φ is the constant >, then v(φ) = T .

• If φ is an propositional atom p, then v(φ) = pv.

• If φ has the form (¬ψ), then v(φ) = \v(ψ).

• If φ has the form (ψ ∧ τ), then v(φ) = v(ψ)&v(τ).

• If φ has the form (ψ ∨ τ), then v(φ) = v(ψ) | v(τ).

• If φ has the form (ψ → τ), then v(φ) = v(ψ)⇒ v(τ).

In Coq, we define a function eval that performs evaluation according to the
given rules.

7

Fixpoint eval (f : PropFormula) (v : Valuation) : Bool :=

match f with

| propTop =>

T

| propBot =>

F

| propAtom a =>

v(a)

| propNeg f1 =>

match (eval f1 v) with

| F => T

| T => F

end

| propConj f1 f2 =>

match (eval f1 v, eval f2 v) with

| (F, F) => F

| (F, T) => F

| (T, F) => F

| (T, T) => T

end

| propDisj f1 f2 =>

match (eval f1 v, eval f2 v) with

| (F, F) => F

| (F, T) => T

| (T, F) => T

| (T, T) => T

end

| propImpl f1 f2 =>

match (eval f1 v, eval f2 v) with

| (F, F) => T

| (F, T) => T

| (T, F) => F

| (T, T) => T

end

end.

Definition 7. A formula is called valid if it evaluates to T with respect to every
possible valuation.

Definition 8. A formula is called satisfiable if it evaluates to T with respect to
at least one possible valuation.

A safe way to check whether a particular formula is valid or satisfiable, is to
evaluate with respect to every possible valuation.

Example 4. For example, we can verify the validity of the formula

φ = p ∧ q → p ∨ q

8

by contructing the following truth table.

p q p ∧ q p ∨ q p ∧ q → p ∨ q
F F F F T
F T F T T
T F F T T
T T T T T

The last column of the table contains the results of evaluating φ with respect to
the valuation corresponding to the respective row. Since there are two distinct
variables in φ, the truth table has |{F, T}|2 = 4 rows. From the fact that the
last row contains only T , we conclude that the formula is valid.

Exercise 2. Is the formula in Example 3 valid? If not, find a counter-example,
namely a valuation for which it evaluates to F .

Exercise 3. Find a valid formula that contains the propositional atoms p, q, r
and w.

6 Proof Theory

In this section, we introduce a formalism that allows us to construct a proof
(graphical and text-based) for a given argument, called sequent.

Definition 9. A sequent consists of propositional formulas φ1, φ2, . . . , φn, called
premises, where n ≥ 0, and a propositional formula ψ called conclusion. We
write a sequent as follows:

φ1, φ2, . . . , φn ` ψ

and say “ψ is provable using the premises φ1, φ2, . . . , φn”.

6.1 Introducing >
The simplest rule involves our constant >. Since > always holds, we can intro-
duce it as an axiom.

Axiom 1 (>i).

>
[>i]

In Coq, we simply state:

Axiom Top_I :

holds propTop.

9

6.2 Rules for Conjunction

We can prove a conjunction by proving both parts of the conjunction. Thus we
can state the following conjunction introduction axiom.

Axiom 2 (∧i).

φ ψ

φ ∧ ψ
[∧i]

Since conjunction expresses that both its arguments hold, we can just ignore
either one, leading to the following conjunction elimination rules.

Axiom 3 (∧e1).

φ ∧ ψ

φ

[∧e1]

Axiom 4 (∧e2).

φ ∧ ψ

ψ

[∧e2]

Example 5. Let us to prove the following sequent.

p ∧ q, r ` q ∧ r

The following proof in graphical notation uses conjunction elimination and con-
junction introduction.

p ∧ q

q
[∧e2] r

q ∧ r
[∧i]

The formulas p∧q and r are premises of the sequent and therefore do not require
any further proof. The text-based version of this proof follows.

1 (p ∧ q) premise
2 q ∧e 1
3 r premise
4 q ∧ r ∧i 2,3

10

In Coq, conjunction introduction and elimination rules are expressed as fol-
lows.

Axiom Conj_I : forall f1 f2,

holds f1 ->

holds f2 ->

holds (propConj f1 f2).

Axiom Conj_E1 : forall f1 f2,

holds (propConj f1 f2) ->

holds f1.

Axiom Conj_E2 : forall f1 f2,

holds (propConj f1 f2) ->

holds f2.

6.3 Double Negation Elimination

We should be able prove φ by proving ¬¬φ, which gives rise to the following
elimination rule for double negation.

Axiom 5 (¬¬e).

¬¬φ

φ

[¬¬i]

Axiom NegNeg_E : forall f,

holds (propNeg (propNeg f)) ->

holds f.

6.4 Implication Elimination

If an implication φ→ ψ and its premise φ are known, we can infer the conclusion
ψ.

Example 6. Assume we know “If it rained, then the street is wet” (φ → ψ),
and also “It rained.”. Then, we can conclude that the street is indeed wet (ψ).

Axiom 6 (→e).

φ φ→ ψ

ψ

[→ e]

11

This rule is often called “Modus Ponens” (or MP).1

6.5 Implication Introduction

The sequent
p→ q ` ¬¬p→ q

should be provable, but we don’t have a rule to introduce implication yet! Our
goal is to allow a proof of the following form.

1 p→ q premise

2 ¬¬p assumption
3 p ¬¬e 2
4 q → e 1, 3

5 ¬¬p→ q →i 2–4
Thus we start a box with an assumption, and use previously proven propositions
(including premises) from the outside in the box. Of course, we cannot use
assumptions from inside the box in rules outside the box; the purpose of the
box is to constrain the assumption to conclusions within the box.

This example gives rise to the following axiom for implication introduction.

Axiom 7 (→i). �

�

�

�
φ
...
ψ

φ→ ψ

[→ i]

Axiom Impl_I : forall f1 f2,

(holds f1 -> holds f2) ->

holds (propImpl f1 f2).

Axiom Impl_E : forall f1 f2,

holds (propImpl f1 f2) ->

holds f1 ->

holds f2.

In the text-based notation of the proof, given above, the first line in the box
states the assumption, which can be used anywhere inside the box.

1“Modus ponens” is an abbreviation of the Latin “modus ponendo ponens” which means
in English “mode that affirms by affirming”. More precisely, we could say “mode that affirms
the antecedent of an implication”.

12

In graphical notation of actual proofs, we annotate the box with the assump-
tion, which can then be introduced anywhere within the box.

�

�

�

p→ q
[premise]

¬¬p
[asmpt]

p
[¬¬e]

q
[→ i]

¬¬p

¬¬p→ q

[→ i]

One way to visualize a premise of a sequent in a graphical proof is to surround
the proof with a box, annotated by the premises as assumptions.

�

�

�

�

�

�

�

p→ q
[asmpt]

¬¬p
[asmpt]

p
[¬¬e]

q
[→ i]

¬¬p

¬¬p→ q
[→ i]

p→q

This notation makes clear that assumptions can be introduced in the proof
wherever needed, as long as there is a surrounding box annotated by the as-
sumption.

13

6.6 Rules for Disjunction

Since a disjunction holds if either of its arguments holds, we can introduce
disjunction as follows.

Axiom 8 (∨i1).

φ

φ ∨ ψ
[∨i1]

Axiom 9 (∨i2).

ψ

φ ∨ ψ
[∨i2]

Disjunction elimination makes use of the arguments as assumptions. If a dis-
junction is proven, and we can derive the same formula χ using either one of
the assumptions, we have proven χ.

Axiom 10 (∨e).

φ ∨ ψ

�

�

�

�
φ
...
χ

�

�

�

�
ψ
...
χ

χ

[∨e]

Example 7.

1 p ∧ (q ∨ r) premise
2 p ∧e1 1
3 q ∨ r ∧e2 1

4 q assumption
5 p ∧ q ∧i 2,4
6 (p ∧ q) ∨ (p ∧ r) ∨i1 5

7 r assumption
8 p ∧ r ∧i 2,7
9 (p ∧ q) ∨ (p ∧ r) ∨i2 8

10 (p ∧ q) ∨ (p ∧ r) ∨e 3, 4–6, 7–9
In graphical notation, we annotate the boxes with the corresponding assump-

tion.

14

p ∧ (q ∨ r)
[pr]

q ∨ r
[∧e2]

�

�

�

�

p ∧ (q ∨ r)
[pr]

p
[∧e1]

q
[as]

p ∧ q
[∧i]

(p ∧ q) ∨ (q ∧ r)
[∨i1]

q

�
�

�
�...
r

(p ∧ q) ∨ (p ∧ r)
[∨e]

The second box does not fit on the page and is left to the reader. This example
demonstrates the practical limitations of the graphical notation. From now
onwards, we therefore focus on the text-based notation for proofs.

Axiom Disj_I1 : forall f1 f2,

holds f1 ->

holds (propDisj f1 f2).

Axiom Disj_I2 : forall f1 f2,

holds f2 ->

holds (propDisj f1 f2).

Axiom Disj_E : forall f1 f2 f3,

holds (propDisj f1 f2) ->

(holds f1 -> holds f3) ->

(holds f2 -> holds f3) ->

holds f3.

6.7 Axioms for ⊥ and Negation

Often during a proof, we make a sufficient number of assumptions such that
we can derive ⊥. This means that the assumptions are mutually contradictory,
since ⊥ can never hold. In such a context, any formula should be provable; we
state:

15

Axiom 11 (⊥e).

⊥

φ

[⊥e]

Exercise 4. A formula of the form ⊥ → φ should be derivable; an implication
is false only when its first argument holds, and ⊥ never holds. Prove ⊥ → φ
without any premises.

Axiom Bot_E : forall f,

holds propBot ->

holds f.

If we can prove a formula and its negation, we clearly have contradictory as-
sumptions, and thus can conclude ⊥.

Axiom 12 (¬e).

φ ¬φ

⊥
[¬e]

Axiom Neg_E : forall f,

holds f ->

holds (propNeg f) ->

holds propBot.

If by assuming a formula φ, we can derive a contradiction, its negation must
hold.

Axiom 13 (¬i). �

�

�

�
φ
...
⊥

¬φ
[¬i]

Axiom Neg_I : forall f,

(holds f -> holds propBot) ->

holds (propNeg f).

16

6.8 Derived Rules

Lemma 1 (¬¬i). The following sequent holds for any formula φ:

φ ` ¬¬φ

Proof. We use φ in the following proof to represent an arbitrarily chosen formula.
1 φ premise

2 ¬φ assumption
3 ⊥ ¬e 1,2

4 ¬¬φ ¬i 2–3
This proof is correct, regardless of the shape of φ, and thus the sequent holds

for any formula φ.

Such a generalized sequent, once proven, can be used like an axiom. We can
state it as follows.

φ

¬¬φ
[¬¬i]

Lemma NegNegI : forall f v,

holds v f -> holds v (propNeg (propNeg f)).

Proof.

intros.

apply Neg_I.

intro.

apply Neg_E with f.

trivial.

trivial.

Qed.

A useful result in practice is that for any formula φ, the disjunction of φ and
its negation is always provable.

Lemma 2 (LEM).

φ ∨ ¬φ
[LEM]

The twin sister of MP eliminates an implication by infers the negation of
the premise from the negation of the conclusion.

17

Lemma 3 (MT).

φ→ ψ ¬ψ

¬φ
[MT]

Exercise 5. Prove MT using text-based notation.

This rule is called “Modus Tollens” (which explains the abbreviation MT).2

6.9 Summary

Basic Rules

φ ψ

φ ∧ ψ
[∧i]

φ ∧ ψ

φ

[∧e1]

φ ∧ ψ

ψ

[∧e2]

φ

φ ∨ ψ
[∨ii]

ψ

φ ∨ ψ
[∨i2]

φ ∨ ψ

�

�

�

�
φ
...
χ

�

�

�

�
ψ
...
χ

χ

[∨e]

�

�

�

�
φ
...
ψ

φ→ ψ

[→ i]

φ φ→ ψ

ψ

[→ e]

2“Modus tollens” is an abbreviation of the Latin “modus tollendo tollens” which means in
English “mode that denies by denying”. More precisely, we could say “mode that denies the
consequent of an implication”.

18

�

�

�

�
φ
...
⊥

¬φ
[¬i]

φ ¬φ

⊥
[¬e]

⊥

φ

[⊥e]
¬¬φ

φ

[¬¬e]

Some Derived Rules

φ

¬¬φ
[¬¬i]

φ ∨ ¬φ
[LEM]

φ→ ψ ¬ψ

¬φ
[MT]

7 Soundness and Completeness

Intuitively, the notions of provability (Section 6), and validity (Section 5) should
be closely related. Of course, we expect that any formula the we can prove, to
be valid. On the other hand, we also would like to guarantee that a proof exists,
whenever a formula is valid.

In order to formally state the corresponding results, we first introduce the
semantic notion of entailment.

Definition 10. If, for all valuations in which all φ1, φ2, . . . , φn evaluate to T,
the formula ψ evaluates to T as well, we say that φ1, φ2, . . . , φn semantically
entail ψ, written:

φ1, φ2, . . . , φn |= ψ

19

Now we can state the main results on the proof theory of propositional logic.

Theorem 1 (Soundness of Propositional Logic). Let φ1, φ2, . . . , φn and ψ be
propositional formulas. If φ1, φ2, . . . , φn ` ψ, then φ1, φ2, . . . , φn |= ψ.

Theorem 2 (Completeness of Propositional Logic). Let φ1, φ2, . . . , φn and ψ
be propositional formulas. If φ1, φ2, . . . , φn |= ψ, then φ1, φ2, . . . , φn ` ψ.

20

