
Predicate Logic

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

September 2, 2010

Generated on Tuesday 14 September, 2010, 11:29

1 Syntax of Predicate Logic

1.1 Need for Richer Language

Propositional logic can easily handle simple declarative statements such as:

Student Peter Lim enrolled in CS3234.

Propositional logic can also handle combinations of such statements such as:

Student Peter Lim enrolled in Tutorial 1, and student Julie Brad-
shaw is enrolled in Tutorial 2.

However, statements involving formulations such as “there exists...” or “ev-
ery...” or “among...” are difficult to express in propositional logic. A statement
of the form

Every student is younger than some instructor.

talks about concepts such as

• being a student,

• being an instructor, and

• being younger than somebody else

These are properties of elements of a set of objects. We express them in predicate
logic using predicates.

Example 1. The statement

Every student is younger than some instructor.

1

is expressed using the following predicates.

• S: For example, S(andy) could denote that Andy is a student.

• I: For example, I(paul) could denote that Paul is an instructor.

• Y : For example, Y (andy, paul) could denote that Andy is younger than
Paul.

A practical problem arises when such predicates are used to express statements
such as

Every student is younger than some instructor.

How do we express “every student”? We need variables that can stand for
constant values, and a quantifier symbol that denotes “every”. Using variables
and quantifiers, we can write:

∀x(S(x)→ (∃y(I(y) ∧ Y (x, y)))).

Literally: For every x, if x is a student, then there is some y such that y is an
instructor and x is younger than y.

Example 2. Consider the following statement.

Not all birds can fly.

Using the following predicates,

B(x): x is a bird

F (x): x can fly

we can express the sentence as follows:

¬(∀x(B(x)→ F (x)))

Example 3. Consider the following statement.

Every girl is younger than her mother.

Using the following predicates,

G(x): x is a girl

M(x, y): x is y’s mother

Y (x, y): x is younger than y

we can express the sentence as follows:

∀x∀y(G(x) ∧M(y, x)→ Y (x, y))

2

Note that in the previous example, the variable y is only introduced to denote
the mother of x. If everyone has exactly one mother, the predicate M(y, x) is a
function, when read from right to left.

We introduce a function symbol m that can be applied to variables and
constants as in

∀x(G(x)→ Y (x,m(x)))

Example 4. Consider the following statement.

Andy and Paul have the same maternal grandmother.

Without function symbols, we would have to write

∀x∀y∀u∀v(M(x, y) ∧M(y, andy) ∧
M(u, v) ∧M(v, paul)→ x = u)

However, with the function symbol m, we can simply write:

m(m(andy)) = m(m(paul))

2 Predicate Logic as a Formal Language

At any point in time, we want to describe the features of a particular “world”,
using predicates, functions, and constants. Thus, we introduce for this world:

• a set of predicate symbols P

• a set of function symbols F

Every function symbol in F and predicate symbol in P comes with a fixed arity,
denoting the number of arguments the symbol can take. Function symbols with
arity 0 are called constants.

Definition 1. The set of terms in predicate logic is given by the BNF:

t ::= x | c | f(t, . . . , t)

where x ranges over a given set of variables V, c ranges over nullary function
symbols in F , and f ranges over function symbols in F with arity n > 0.

Example 5. If n is a nullary function symbol (constant), f is a unary function
symbol, and g is a binary function symbol, then examples of terms are:

• g(f(n), n)

• f(g(n, f(n)))

Example 6. If 0, 1, 2, 3 are nullary functions (constants), s is unary, and +,−
and ∗ are binary, then

∗(−(2,+(s(x), y)), x)

is a term.

3

Occasionally, we allow ourselves to use infix notation for function symbols as in

(2− (s(x) + y)) ∗ x

Definition 2. The set of formulas in predicate logic is defined by the BNF:

φ ::= P (t1, t2, . . . , tn) | ⊥ | > | (¬φ) | (φ ∧ φ) | (φ ∨ φ) |
(φ→ φ) | (∀xφ) | (∃xφ)

where P ∈ P is a predicate symbol of arity n ≥ 0, ti are terms over F and

x is a variable.

We allow for nullary predicate symbols. The predicates that they denote do
not depend on any arguments, and as such are similar to propositional atoms
in propositional logic.

Convention 1. Just like for propositional logic, we introduce convenient con-
ventions to reduce the number of parentheses:

• ¬,∀x and ∃x bind most tightly;

• then ∧ and ∨;

• then →, which is right-associative.

We extend the the notion of a parse tree, to provide for functions, predicates
and quantifiers.

Example 7.
∀x((P (x)→ Q(x)) ∧ S(x, y))

has parse tree
∀x

∧

→

P

x

Q

x

S

x y

2.1 Equality

Equality is a common predicate, usually used in infix notation.

=∈ P

Example 8. Instead of the formula

= (f(x), g(x))

we usually write the formula
f(x) = g(x)

4

2.2 Free and Bound Variables

Consider the formula

∀x((P (x)→ Q(x)) ∧ S(x, y))

with the following syntax tree:
∀x

∧

→

P

x

Q

x

S

x y

The quantifier ∀x refers to all occurrences of x below it in the syntax tree. We
say that the quantifier binds the variable occurrence. The variable occurrence
x is said to be bound by ∀x. A variable that is not bound by any quantifier is
called free. For example, the variable y is a free variable in the formula above.
Consider the formula

(∀x(P (x) ∧Q(x)))→ (¬P (x) ∨Q(y))

with the following syntax tree:
→

∀x

∧

P

x

Q

x

∨

¬

P

x

Q

y

Here, the occurrences of x in P (x)∧ P (x) are bound by ∀x, whereas the occur-
rence of x in ¬P (x) is free.

In order to define the semantics of quantifiers, we need to be able to replace
free occurrences of variables systematically by terms, using an operation called
substitution.

Definition 3. Given a variable x, a term t and a formula φ, we define [x⇒ t]φ
to be the formula obtained by replacing each free occurrence of variable x in φ
with t.

Example 9.

[x⇒ f(x, y)]((∀x(P (x) ∧Q(x)))→ (¬P (x) ∨Q(y)))

= ∀x(P (x) ∧Q(x)))→ (¬P (f(x, y)) ∨Q(y))

5

→

∀x

∧

P

x

Q

x

∨

¬

P

x

Q

y

becomes
→

∀x

∧

P

x

Q

x

∨

¬

P

f

x y

Q

y

The notion of substitution of x by t in φ, denoted [x ⇒ t]φ poses a technical
difficulty when t contains a variable y and x occurs under the scope of ∀y in φ.

Example 10.
[w ⇒ f(v, v)](S(w) ∧ ∀v(P (w)→ Q(v)))

∧

S

w

∀v

→

P

w

Q

v

Here the variable v occurs in the term that is to be substituted for

w. However, there is an occurrence of w under a ∀w. Thus, a naive execution
of the substitution would “slip” occurrences of w “under” the scope of ∀w. This
is to be avoided; any variable in t needs to be free in [x⇒ t]φ.

Definition 4. Given a term t, a variable x and a formula φ, we say that t is
free for x in φ, if no free x leaf in φ occurs in the scope of ∀y or ∃y for any
variable y occurring in t.

In order to compute [x ⇒ t]φ, we demand that t is free for x in φ. If this
condition does not hold, we consistently rename bound variables in φ.

Example 11.
[w ⇒ f(v, v)](S(w) ∧ ∀v(P (w)→ Q(v)))

6

⇓

[w ⇒ f(v, v)](S(w) ∧ ∀z(P (w)→ Q(z)))

⇓

S(f(v, v)) ∧ ∀z(P (f(v, v))→ Q(z))

3 Semantics of Predicate Logic

3.1 Models

Definition 5. Let F contain function symbols and P contain predicate symbols.
A model M for (F ,P) consists of:

1. A non-empty set U , the universe;

2. for each nullary function symbol f ∈ F a concrete element fM ∈ U ;

3. for each f ∈ F with arity n > 0, a concrete function fM : Un → U ;

4. for each P ∈ P with arity n > 0, a function PM : Un → {F, T}.

5. for each P ∈ P with arity n = 0, a value from {F, T}.

Example 12. Let F = {e, ·} and P = {≤}.
Let model M for (F ,P) be defined as follows:

1. Let U be the set of binary strings over the alphabet {0, 1};

2. let eM = ε, the empty string;

3. let ·M be defined such that s1 ·M s2 is the concatenation of the strings s1
and s2; and

4. let ≤M be defined such that s1 ≤M s2 iff s1 is a prefix of s2.

Examples of elements of U are ε and 10001. The term 1010 · 1100 is given the
meaning 1010 ·M 1100 = 10101100 in M, whereas the term 000 · ε is given the
meaning 000 ·M ε = 000.

7

3.2 Equality Revisited

Usually, we require that the equality predicate = is interpreted as same-ness.
This means that allowable models are restricted to those in which a =M b holds
if and only if a and b are the same elements of the model’s universe.

Example 13. Continuing Example 12, we require in every model M that
000 =M 000 holds and that 001 =M 100 does not hold. We write 001 6=M 100
to denote the latter.

Example 14. Let F = {z, s} and P = {≤}.
Let model M for (F ,P) be defined as follows:

1. Let U be the set of natural numbers;

2. let zM = 0;

3. let sM be defined such that s(n) = n+ 1; and

4. let ≤M be defined such that n1 ≤M n2 iff the natural number n1 is less
than or equal to n2.

With the above restriction on equality, we can see that the relation =M is a
subset of ≤M; we write =M⊆≤M.

3.3 Free Variables and the Satisfaction Relation

We can give meaning to formulas with free variables by providing an environ-
ment (lookup table) that assigns variables to elements of our universe:

l : V → U.

We define environment extension such that l[x 7→ a] is the environment that
maps x to a and any other variable y to l(y). Using this definition, we can now
define when a model satisfies a formula.

Definition 6. The model M satisfies φ with respect to environment l, written
M |=l φ:

• in case φ is of the form P (t1, t2, . . . , tn), if a1, a2, . . . , an are the results of
evaluating t1, t2, . . . , tn with respect to l, and if PM(a1, a2, . . . , an) = T ;

• in case φ is of the form P , if PM = T ;

• in case φ has the form ∀xψ, if the M |=l[x 7→a] ψ holds for all a ∈ U ;

• in case φ has the form ∃xψ, if the M |=l[x 7→a] ψ holds for some a ∈ U ;

• in case φ has the form ¬ψ, if M |=l ψ does not hold;

• in case φ has the form ψ1 ∨ ψ2, if M |=l ψ1 holds or M |=l ψ2 holds;

8

• in case φ has the form ψ1 ∧ ψ2, if M |=l ψ1 holds and M |=l ψ2 holds;
and

• in case φ has the form ψ1 → ψ2, if M |=l ψ2 holds whenever M |=l ψ1

holds.

If a formula φ has no free variables, we call φ a sentence. In this case, M |=l φ
holds or does not hold regardless of the choice of l. Thus for sentences φ, we
leave out the environment, and write M |= φ or M 6|= φ.

Definition 7. Let Γ be a possibly infinite set of formulas in predicate logic and
ψ a formula. We say that Γ entails ψ, written Γ |= ψ, iff for all models M and
environments l, whenever M |=l φ holds for all φ ∈ Γ, then M |=l ψ.

Definition 8. We say that a formula ψ is satisfiable, iff there is some model
M and some environment l such that M |=l ψ holds.

Definition 9. A set of formulas Γ is called satisfiable, iff there is some model
M and some environment l such that M |=l φ, for all φ ∈ Γ.

Definition 10. Let Γ be a possibly infinite set of formulas in predicate logic
and ψ a formula. The formula ψ is called valid, iff for all models M and
environments l, we have M |=l ψ.

Note that both validity and entailment require to consider all possible models.
Not only are we free to choose the universe, we are also free to decide the
interpretation of every function and predicate symbol. As a result, the number
of models is usually infinite (and usually not countably infinite). This makes it
very hard to prove validity and entailment, using semantic techniques.

The question arises how to effectively argue about all possible models. Would
it be possible to define a method of natural deduction that allows us to answer
the questions of entailment and validity?

9

	Syntax of Predicate Logic
	Need for Richer Language

	Predicate Logic as a Formal Language
	Equality
	Free and Bound Variables

	Semantics of Predicate Logic
	Models
	Equality Revisited
	Free Variables and the Satisfaction Relation

