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1 Proof Theory

1.1 Inheriting Natural Deduction of Propositional Logic

If we consider propositions as nullary predicates, propositional logic is a sub-
language of predicate logic. It will come as no surprise that we can translate
the rules for natural deduction in propositional logic directly to predicate logic.
Each of the following rules applies to any formulas φ and ψ of predicate logic.
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1.2 Equality

We mentioned in “Semantics of Predicate Logic” that equality is usually inter-
preted to mean identity, which means that in a model a =M b holds if and
only if a and b are the same elements of the model’s universe. It is safe to
assume t = t for any term t, because both sides of the equation will evaluate to
the same element, regardless of the context (environment) in which we operate.
The following equality introduction rule expresses this reasoning.

t = t

[= i]

The next rule, equality elimination, allows us to replace a term t1 by another
term t2, provided that t1 = t2 is already proven. More precisely, in order to
prove a formula ψ, in which a term t2 appears (possibly multiple times), it is
sufficient to prove t1 = t2 and the formula ψ′ that results from ψ by replacing
t2 by t1. The rule stated below uses a formula φ in which a free variable x
represents the positions of t2 in ψ, thus ψ = [x⇒ t2]φ, and ψ′ = [x⇒ t1]φ.
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t1 = t2 [x⇒ t1]φ

[x⇒ t2]φ

[= e]

Using these two rules, we show: We show:

f(z) = g(z) ` h(g(z)) = h(f(z))

as follows:
1 f(z) = g(z) premise
2 h(f(z)) = h(f(z)) = i
3 h(g(z)) = h(f(z)) = e 1,2

Note that the formula h(g(z)) = h(f(z)) in Line 3 has the form [x ⇒ t2]φ,
where t2 is g(z) and φ is h(z) = h(f(z). If we use f(z) for t1, then Rule = e
asks us to prove t1 = t2 (Line 1), and [x⇒ t1]φ (Line 2).

1.3 Universal Quantification

Elimination of Universal Quantification Once you have proven ∀xφ, you
can replace x by any term t in φ, provided that t is free for x in φ, and thus
“eliminate” the universal quantification.

∀xφ

[x⇒ t]φ

[∀x e]

This rule is justified by the semantics of ∀xφ, since in a particular context
(environment) any term t denotes a value in the model, and φ holds for all such
values, if ∀xφ holds in the model.

In t any function symbols of the logic, as well as variables that are known
in the context can be used.

Example 1. We shall prove: S(g(john)),∀x(S(x)→ ¬L(x)) ` ¬L(g(john))
1 S(g(john)) premise
2 ∀x(S(x)→ ¬L(x)) premise
3 S(g(john))→ ¬L(g(john)) ∀x e 2
4 ¬L(g(john)) → e 3,1

Introduction of Universal Quantification The introduction rule for uni-
versal quantification is more complicated. Let us consider a new kind of box
that allows us to introduce a fresh variable. For example,�

�
�
�...

z
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is a box in which the variable z can be used in terms, as in�

�

�

�
...

f(z) = f(z)
...

z

Let us say we introduce a variable x0 in a box. Without any assumptions on
x0, we prove a formula ψ, in which x0 appears. The fact that x0 appears in ψ,
we can characterize by writing ψ as [x ⇒ x0]φ. Since we have not made any
assumptions on x0 within the box, we have shown that [x ⇒ x0]φ holds for all
possible instantiations of x by values of the universe; in other words, we can
conclude ∀xφ. �

�
�
�

...
[x⇒ x0]φ

x0

∀xφ
[∀x i]

The variable x0 must be fresh; we cannot introduce the same variable twice in
nested boxes. Freshness of course guarantees that x0 is free for x in φ.

Example 2. We shall prove the sequent ∀x(P (x)→ Q(x)),∀xP (x) ` ∀xQ(x)
1 ∀x(P (x)→ Q(x)) premise
2 ∀xP (x) premise

3 P (x0)→ Q(x0) ∀x e 1 x0
4 P (x0) ∀x e 2
5 Q(x0) → e 3,4

6 ∀xQ(x) ∀x i 3–5

1.4 Existential Quantification

Introduction of Existential Quantification For existential quantification,
the easy direction is introduction.

[x⇒ t]φ

∃xφ
[∃x i]

In order to prove ∃xφ, it suffices to find a term t as “witness”, provided—as
usual—that t is free for x in φ.
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Example 3. Assume that the set F contains a nullary function symbol c, and
that the set P contains a unary predicate symbol P . We should be able to prove:

∀xP (x) ` ∃xP (x)

since at least the constant c should have the property P , once we know that all
elements of the universe has the property P . The corresponding proof follows:

1 ∀xP (x) premise
2 [x⇒ c]P (x) ∀x e 1
3 ∃xP (x) ∃x i 2

Elimination of Existential Quantification Finally, for elimination of ex-
istential quantification, we combine the two kinds of boxes; we simultaneously
introduce a fresh variable and an assumption.

∃xφ

�

�

�

�
[x⇒ x0]φ

...
χ

x0

[x⇒x0]φ

χ

[∃e]

If we know ∃xφ, we know that there exist at least one object x for which φ
holds. We call that element x0, and assume [x ⇒ x0]φ within a box in which
we introdue x0. Without assumptions on x0, we prove a formula χ, in which
x0 does not appear. Since we have not made any assumptions on x0, we can
conclude from ∃xφ that χ holds.

Example 4. We prove the following sequent:

∀x(P (x)→ Q(x)),∃xP (x) ` ∃xQ(x)

1 ∀x(P (x)→ Q(x)) premise
2 ∃xP (x) premise

3 P (x0) assumption x0
4 P (x0)→ Q(x0) ∀x e 1
5 Q(x0) → e 4,3
6 ∃xQ(x) ∃x i 5

7 ∃xQ(x) ∃x e 2,3–6
Note that ∃xQ(x) within the box does not contain x0, and therefore can be
“exported” from the box.

Example 5. We prove the following sequent:

∀x(Q(x)→ R(x)),∃x(P (x) ∧Q(x)) ` ∃x(P (x) ∧R(x))
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1 ∀x(Q(x)→ R(x)) premise
2 ∃x(P (x) ∧Q(x)) premise

3 P (x0) ∧Q(x0) assumption x0
4 Q(x0)→ R(x0) ∀x e 1
5 Q(x0) ∧e2 3
6 R(x0) → e 4,5
7 P (x0) ∧e1 3
8 P (x0) ∧R(x0) ∧i 7, 6
9 ∃x(P (x) ∧R(x) ∃x i 8

10 ∃x(P (x) ∧R(x)) ∃x e 2,3–9

Note that variables introduced by a box must be fresh! The following is not a
proof, since the variable x0 is introduced in nested boxes.

1 ∃xP (x) premise
2 ∀x(P (x)→ Q(x)) premise

3 x0

4 P (x0) assumption x0
5 P (x0)→ Q(x0) ∀x e 2
6 Q(x0) → e 5,4

7 Q(x0) ∃x e 1, 4–6

8 ∀yQ(y) ∀y i 3–7

1.5 Equivalences

We write φ a` ψ iff φ ` ψ and also ψ ` φ.

Lemma 1.

¬∀xφ a` ∃x¬φ
¬∃xφ a` ∀x¬φ
∀x∀yφ a` ∀y∀xφ
∃x∃yφ a` ∃y∃xφ

∀xφ ∧ ∀xψ a` ∀x(φ ∧ ψ)

∃xφ ∨ ∃xψ a` ∃x(φ ∨ ψ)

Proof. We shall prove the left-to-right directions of the first and fourth state-
ment, and leave the remaining proofs to the reader. The proves are actually
schemas; actual sequents and proofs are obtained by replacing φ and ψ with
arbitrary formulas in a particular predicate logic.

• ¬∀xφ ` ∃x¬φ
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1 ¬∀xφ premise

2 ¬∃x¬φ assumption

3 x0

4 ¬[x⇒ x0]φ assumption
5 ∃x¬φ ∃x i 4
6 ⊥ ¬e 5, 2

7 [x⇒ x0]φ PBC 4–6

8 ∀xφ ∀x i 3–7
9 ⊥ ¬e 8, 1

10 ∃x¬φ PBC 2–9

• ∃x∃yφ ` ∃y∃xφ
If x and y are the same variable, the left and write hand side are the
same formula, and thus the sequent holds through a simple argument (for
example conjunction introduction followed by elimination).

Assume now that x and y are different variables.

1 ∃x∃yφ premise

2 [x⇒ x0](∃yφ) assumption x0
3 ∃y([x⇒ x0]φ) def of subst (x, y different)

4 [y ⇒ y0][x⇒ x0]φ assumption y0
5 [x⇒ x0][y ⇒ y0]φ def of subst (x, y, x0, y0 different)
6 ∃x[y → y0]φ ∃x i 5
7 ∃y∃xφ ∃y i 6

8 ∃y∃xφ ∃y e 3, 4–7

9 ∃y∃xφ ∃x e 1, 2–8

Exercise 1. Prove the remaining directions of the statements in Lemma 1.

Lemma 2. Assuming that x is not free in ψ, the following sequents hold:

∀xφ ∧ ψ a` ∀x(φ ∧ ψ)

∀xφ ∨ ψ a` ∀x(φ ∨ ψ)

∃xφ ∧ ψ a` ∃x(φ ∧ ψ)

∃xφ ∨ ψ a` ∃x(φ ∨ ψ)

Exercise 2. Prove the statements of Lemma 2.

2 Soundness, Completeness, Compactness

The following result justifies the use of natureal deduction in predicate logic.
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Theorem 1 (Soundness and Completeness of Predicate Logic).

φ1, . . . , φn |= ψ

iff

φ1, . . . , φn ` ψ

The theorem states that every valid sequent can be proven, and every sequent
that can be proven is valid. This theorem was proven by Kurt Gödel in 1929 in
his doctoral dissertation. A description of his proof, as well as the proofs of the
following theorems, is beyond the scope of this chapter.

Theorem 2. The decision problem of validity in predicate logic is undecidable:
no program exists which, given any language in predicate logic and any formula
φ in that language, decides whether |= φ.

Proof. (sketch)

• Establish that the Post Correspondence Problem (PCP) is undecidable

• Translate an arbitrary PCP, say C, to a formula φ.

• Establish that |= φ holds if and only if C has a solution.

• Conclude that validity of predicate logic formulas is undecidable.

Theorem 3. Let Γ be a (possibly infinite) set of sentences of predicate logic. If
all finite subsets of Γ are satisfiable, the Γ itself is satisfiable.

Theorem 4 (Löwenheim-Skolem Theorem). Let ψ be a sentence of predicate
logic such that for any natural number n ≥ 1 there is a model of ψ with at least
n elements. Then ψ has a model with infinitely many elements.
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