
Propositional Logic, Part II

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

September 2, 2010

Generated on Thursday 2 September, 2010, 18:46

1 Remaining Questions

Formulas in propositional logic can be categorized into the following three
classes:

• valid (hold under all valuations),

• unsatisfiable (hold under no valuation),

• invalid but satisfiable (holds under some, but not all valuations).

The question remains, however, how to decide whether a given formula is valid
or satisfiable. Another important question asks whether two formulas are equiv-
alent, i.e. whether one evaluates to T under exactly the same valuations under
which the other evaluates to T .

Definition 1. A decision problem is a question in some formal system with a
yes-or-no answer.

Example 1. The question whether a given propositional formula is satisifiable
(unsatisfiable, valid, invalid) is a decision problem.

Example 2. The question whether two given propositional formulas are equiv-
alent is also a decision problem.

Clearly, the truth table method allows us to answer these questions. If the last
column of the truth table of a formula has only T , then the formula is valid, if
it has only F , it is unsatisfiable. If the truth tables of two formulas have the
same last column (provided the order of valuations of propositional atoms is the
same), then the two formulas are equivalent.

Thus, using a truth table, we can implement an algorithm that returns “yes”
if the formula is satisifiable, and that returns “no” if the formula is unsatisfiable.

1

Definition 2. Decision problems for which there is an algorithm computing
“yes” whenever the answer is “yes”, and “no” whenever the answer is “no”,
are called decidable.

So the good news is that the questions of validity, satisfiability and equivalence of
formulas of propositional logic are decidable. However, propositional formulas
can be large, so the practical question remains whether we can answer these
questions efficiently.

Proving satisfiability/validity using truth tables or natural deduction is im-
practical for large formulas, since they always require an effort that grows ex-
ponentially with the number of variables that occur in the formula.

Is there a practical way of deciding satisfiability? Is there an efficient al-
gorithm that decides whether a given formula is satisfiable? More precisely,
is there a polynomial-time algorithm that decides whether a given formula is
satisfiable?

2 Complexity of Satisfiability

The unfortunate answer to this question is: We do not know (as of 2010)! How-
ever, what we do know is that a satisfiable formula can be quickly demonstrated
to be satisfiable. We only need to produce a valuation that makes the formula
true. The evaluation of the formula with respect to the valuation can be done
in a time proportional to the size of the formula.

Such a proof for the affirmative answer of a decision problem is called a
witness.

Definition 3. Decision problems for which the “yes” answer has a proof that
can be checked in polynomial time, are called NP1.

The class NP was introduced by Stephen Cook in 1971 at the 3rd Annual
ACM Symposium on Theory of Computing. At the conference, there was a
fierce debate whether there could be a polynomial time algorithm to solve such
problems. John Hopcroft convinced the delegates that the problem should be
put off to be solved at some later date. In 1972, Richard Karp presented 21 mu-
tually equivalent problems, for which no polynomial time algorithms was known.
Cook and Leonid Levin proved independently that propositional satisifiability
is in this class, which was dubbed NP-complete.

The class of problems for which a polynomial algorithm exists, is called P .
The question naturally arises then, whether there is a polynomial algorithm
for an NP-complete problem. All NP-complete problems are equivalent (more
precisely they can be translated to each other in polynomial time), and thus
if there was a polynomial time algorithm for any NP-complete problem, they
would all be in P. So the question can be stated as: “P = NP?”

1NP stands for “Non-deterministic Polynomial time”, a terminology that stems from an
alternative definition of the class, which defines NP to be the set of decision problems solvable
in polynomial time by a non-deterministic Turing machine.

2

To date no proof has been found for either P = NP or P 6= NP. Many
computer scientists assume P 6= NP, and therefore consider the NP-complete
problems as “intractable”. Over the years, many “proofs” for one or the other
answer have been proposed, and subsequently rejected, most recently by Vinay
Deolalikar (a researcher at HP), in August 2010.

3 Conjunctive Normal Form

Definition 4. A literal L is either an atom p or the negation of an atom ¬p. A
formula C is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where each clause is a disjunction of literals:

L ::= p|¬p
D ::= L|L ∨D
C ::= D|D ∧ C

Example 3. (¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r) is in CNF.

Example 4. (¬p ∨ q ∨ r) ∧ ((p ∧ ¬q) ∨ r) ∧ (¬r) is not in CNF.

Example 5. (¬p ∨ q ∨ r) ∧ ¬(¬q ∨ r) ∧ (¬r) is not in CNF.

Lemma 1. A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i, j ≤ m such that Li is ¬Lj.

Example 6. In order to disprove

|= (¬q ∨ p ∨ r) ∧ (¬p ∨ r) ∧ q

we only need to disprove any of:

|= (¬q ∨ p ∨ r) |= (¬p ∨ r) |= q

Example 7. In order to prove

|= (¬q ∨ p ∨ q) ∧ (p ∨ r ∨ ¬p) ∧ (r ∨ ¬r)

we need to prove all of:

|= (¬q ∨ p ∨ q) |= (p ∨ r¬p) |= (r ∨ ¬r)

Clearly, the definitions of satisfiability and validity imply that a formula φ is
satisfiable iff ¬φ is not valid. Thus, we can test satisfiability of φ by transforming
¬φ into CNF, and show that some clause is not valid.

3

4 Transformation to CNF

Theorem 1. Every formula in the propositional calculus can be transformed
into an equivalent formula in CNF.

Proof. The proof of this theorem consists of an algorithm that transforms arbi-
trary formulas into CNF. It proceeds as follows:

1. Eliminate implication using:

A→ B ≡ ¬A ∨B

2. Push all negations inward using De Morgan’s laws:

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬(A ∨B) ≡ (¬A ∧ ¬B)

3. Eliminate double negations using the equivalence ¬¬A ≡ A

4. The formula now consists of disjunctions and conjunctions of literals. Use
the distributive laws

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

(A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)

to eliminate conjunctions within disjunctions.

Example 8.

(¬p→ ¬q)→ (p→ q) ≡ ¬(¬¬p ∨ ¬q) ∨ (¬p ∨ q)
≡ (¬¬¬p ∧ q) ∨ (¬p ∨ q)
≡ (¬p ∧ q) ∨ (¬p ∨ q)
≡ (¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q)

5 Overview of Algorithms for Satisfiability

The algorithms for proving satisfiability of a formula ψ can be broadly catego-
rized into the following classes:

• CNF-based: Transform ¬ψ into Conjunctive Normal Form ncnf and prove
validity (non-validity) of ncnf

• Transform ψ into Conjunctive Normal Form cnf and search for a satisfying
valuation

• Search-based algorithms: Exhaustively search a tree of valuations, until a
satisfying valuation is found. One class of such algorithms is called DPLL
(Davis-Putnam-Logemann-Loveland), instances of which are among the
most efficient solvers for the satisfiability problem.

4

• Incomplete algorithms: Such algorithms return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and all unsatisfiable
formulas. Often, these algorithms perform local search, repeatedly trying
to improve a satisfying valuation, starting from a computed or randomly
generated initial valuation. an example of such an algorithm is WalkSAT.

• Propagation-based algorithms: Use propagation rules to make implicit
logic information explicit. The outcome of such an algorithm can be
“yes” for proving satisfiability “no” for proving unsatisfiability, and “don’t
know” for cases where this method does not find a proof.

5

	Remaining Questions
	Complexity of Satisfiability
	Conjunctive Normal Form
	Transformation to CNF
	Overview of Algorithms for Satisfiability

