02—Traditional Logic

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

August 19, 2010

Generated on Wednesday 18th August, 2010, 23:00

< 17 ►

Categorical Terms and their Meaning

- Propositions, Axioms, Lemmas, Proofs
- 3 Manipulating Terms and Propositions
- Arguments and Syllogisms

(日)

Origins and Goals Form, not Content Categorical Terms Meaning through models

(日) (四) (三) (三)

Categorical Terms and their Meaning

Origins and Goals

(1)

- Form, not Content
- Categorical Terms
- Meaning through models

2 Propositions, Axioms, Lemmas, Proofs

- 3 Manipulating Terms and Propositions
- Arguments and Syllogisms

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Traditional Logic

Origins

Greek philosopher Aristotle (384–322 BCE) wrote treatise *Prior Analytics*; considered the earliest study in formal logic; widely accepted as the definite approach to deductive reasoning until the 19thcentury.

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms

Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

Traditional Logic

Origins

Greek philosopher Aristotle (384–322 BCE) wrote treatise *Prior Analytics*; considered the earliest study in formal logic; widely accepted as the definite approach to deductive reasoning until the 19thcentury.

Goal

Express relationships between sets; allow reasoning about set membership

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms **Origins and Goals**

Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

All humans are mortal. All Greeks are humans. Therefore, all Greeks are mortal.

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms **Origins and Goals**

Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

All humans are mortal. All Greeks are humans. Therefore, all Greeks are mortal.

Makes "sense", right?

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals

Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

All humans are mortal. All Greeks are humans. Therefore, all Greeks are mortal.

Makes "sense", right?

Why?

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals Form. not Content

Categorical Terms Meaning through models

(日)

э

All cats are predators. Some animals are cats. Therefore, all animals are predators.

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

Example 2

All cats are predators. Some animals are cats. Therefore, all animals are predators.

Does not make sense!

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

All cats are predators. Some animals are cats. Therefore, all animals are predators.

Does not make sense!

Why not?

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

Example 3

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems. Therefore, all Christie suspension systems are caterpillar systems.

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 回・

Example 3

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems. Therefore, all Christie suspension systems are caterpillar systems.

Makes sense, even if you do not know anything about suspension systems.

Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

Example 3

All slack track systems are caterpillar systems. All Christie suspension systems are slack track systems. Therefore, all Christie suspension systems are caterpillar systems.

Makes sense, even if you do not know anything about suspension systems.

Form, not content

In logic, we are interested in the form of valid arguments, irrespective of any particular domain of discourse.

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

э

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Terms

The set Terms contains all terms under consideration

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・雪 ・ ・ ヨ ・

Categorical Terms

Terms refer to sets

Term animals refers to the set of animals, term brave refers to the set of brave persons, etc

Terms

The set Terms contains all terms under consideration

Examples

 $animals \in Terms$

 $brave \in Terms$

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Fix universe

For a particular \mathcal{M} , the universe $U^{\mathcal{M}}$ contains all elements that we are interested in.

Origins and Goals Form, not Content Categorical Terms Meaning through models

Models

Meaning

A model $\ensuremath{\mathcal{M}}$ fixes what elements we are interested in, and what we mean by each term

Fix universe

For a particular \mathcal{M} , the universe $U^{\mathcal{M}}$ contains all elements that we are interested in.

Meaning of terms

For a particular \mathcal{M} and a particular term *t*, the meaning of *t* in \mathcal{M} , denoted $t^{\mathcal{M}}$, is a particular subset of $U^{\mathcal{M}}$.

Propositions, Axioms, Lemmas, Proofs Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

For our examples, we have Term = {cats, humans, Greeks,...}.

Origins and Goals Form, not Content Categorical Terms Meaning through models

<ロ> <同> <同> < 回> < 回> < □> < □> <

臣

For our examples, we have Term = {cats, humans, Greeks,...}.

First meaning ${\cal M}$

• $U^{\mathcal{M}}$: the set of all living beings,

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

For our examples, we have Term = {cats, humans, Greeks,...}.

First meaning ${\cal M}$

- $U^{\mathcal{M}}$: the set of all living beings,
- cat \mathcal{M} the set of all cats,

Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

For our examples, we have
Term = {cats, humans, Greeks,...}.

First meaning \mathcal{M}

- $U^{\mathcal{M}}$: the set of all living beings,
- cat^{*M*} the set of all cats,
- humans^{*M*} the set of all humans,
- . . .

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Example 1B

Consider the same Term = {cats, humans, Greeks, ...}.

CS 3234: Logic and Formal Systems 02—Traditional Logic

Origins and Goals Form, not Content Categorical Terms Meaning through models

E

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

Second meaning \mathcal{M}'

• U^M: A set of 100 playing cards, *depicting* living beings,

CS 3234: Logic and Formal Systems 02—Traditional Logic

Origins and Goals Form, not Content Categorical Terms Meaning through models

(日)

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

Second meaning \mathcal{M}'

- U^M: A set of 100 playing cards, *depicting* living beings,
- cat^M: all cards that show cats,

Origins and Goals Form, not Content Categorical Terms Meaning through models

Example 1B

Consider the same $Term = \{cats, humans, Greeks, ...\}$.

Second meaning \mathcal{M}^\prime

- U^M: A set of 100 playing cards, *depicting* living beings,
- cat^M: all cards that show cats,
- humans $^{\mathcal{M}}$: all cards that show humans,
- . . .

Categorical Terms and their Meaning Propositions, Axioms, Lemmas, Proofs

Manipulating Terms and Propositions Arguments and Syllogisms Origins and Goals Form, not Content Categorical Terms Meaning through models

ヘロト ヘロト ヘヨト

크

Consider the following set of terms: Term = {even,odd,belowfour}

CS 3234: Logic and Formal Systems 02—Traditional Logic

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・四ト ・ヨト ・ヨト

臣

Consider the following set of terms: Term = {even,odd,belowfour}

First meaning \mathcal{M}_1

•
$$U^{\mathcal{M}_1} = \mathbb{N}$$
,

CS 3234: Logic and Formal Systems 02—Traditional Logic

Origins and Goals Form, not Content Categorical Terms Meaning through models

臣

Consider the following set of terms: Term = {even,odd,belowfour}

First meaning \mathcal{M}_1

•
$$U^{\mathcal{M}_1} = \mathbb{N}$$
,

•
$$even^{\mathcal{M}_1} = \{0, 2, 4, \ldots\},\$$

Origins and Goals Form, not Content Categorical Terms Meaning through models

イロト イヨト イヨト イヨト

크

Consider the following set of terms: Term = {even,odd,belowfour}

First meaning \mathcal{M}_1

•
$$U^{\mathcal{M}_1} = \mathbb{N}$$
,

•
$$even^{\mathcal{M}_1} = \{0, 2, 4, \ldots\},\$$

•
$$odd^{\mathcal{M}_1} = \{1, 3, 5, \ldots\}, and$$

Origins and Goals Form, not Content Categorical Terms Meaning through models

臣

Consider the following set of terms: Term = {even,odd,belowfour}

First meaning \mathcal{M}_1

•
$$U^{\mathcal{M}_1} = \mathbb{N}$$
,

•
$$even^{\mathcal{M}_1} = \{0, 2, 4, \ldots\},\$$

•
$$odd^{\mathcal{M}_1} = \{1, 3, 5, \ldots\}$$
, and

• belowfour
$$^{\mathcal{M}_1} = \{0, 1, 2, 3\}.$$

Origins and Goals Form, not Content Categorical Terms Meaning through models

臣

Consider the same Term = {even, odd, belowfour}

CS 3234: Logic and Formal Systems 02—Traditional Logic

Origins and Goals Form, not Content Categorical Terms Meaning through models

<ロ> <同> <同> < 回> < 回> < □> < □> <

臣

Consider the same Term = {even, odd, belowfour}

Second meaning \mathcal{M}_2

•
$$U^{\mathcal{M}_2} = \{a, b, c, \dots, z\},\$$

CS 3234: Logic and Formal Systems 02—Traditional Logic

Origins and Goals Form, not Content Categorical Terms Meaning through models

<ロ> <同> <同> < 回> < 回> < □> < □> <

臣

Consider the same Term = {even, odd, belowfour}

Second meaning \mathcal{M}_2

•
$$U^{\mathcal{M}_2} = \{a, b, c, ..., z\},\$$

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・四ト ・ヨト ・ヨト

크

Consider the same Term = {even, odd, belowfour}

Second meaning \mathcal{M}_2

•
$$U^{\mathcal{M}_2} = \{a, b, c, \ldots, z\},$$

•
$$even^{\mathcal{M}_2} = \{a, e, i, o, u\},\$$

• odd
$$\mathcal{M}_2 = \{ m{b}, m{c}, m{d}, \ldots \}$$
, and

Origins and Goals Form, not Content Categorical Terms Meaning through models

・ロト ・四ト ・ヨト ・ヨト

臣

Consider the same Term = {even, odd, belowfour}

Second meaning \mathcal{M}_2

•
$$U^{\mathcal{M}_2} = \{a, b, c, ..., z\},\$$

• even
$$\mathcal{M}_2 = \{a, e, i, o, u\},\$$

• odd
$$^{\mathcal{M}_2} = \{ m{b}, m{c}, m{d}, \ldots \}$$
, and

• belowfour
$$^{\mathcal{M}_2}=\emptyset.$$

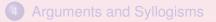
Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

(日) (四) (三) (三)

Categorical Terms and their Meaning

Propositions, Axioms, Lemmas, Proofs

- Categorical Propositions
- Semantics of Propositions
- Axioms, Lemmas and Proofs
- 3 Manipulating Terms and Propositions



Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・ ・ 四・ ・ 回・ ・ 回・

3

Categorical Propositions

All cats are predators

expresses a relationship between the terms ${\tt cats}$ (subject) and ${\tt predators}$ (object).

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・・ (日・・ (日・・ 日・)

Categorical Propositions

All cats are predators

expresses a relationship between the terms cats (subject) and predators (object).

Intended *meaning*

Every thing that is included in the class represented by cats is also included in the class represented by predators.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Four Kinds of Categorical Propositions

		Quantity	
		universal	particular
Quality	affirmative	All t_1 are t_2	Some t_1 are t_2
	negative	No t_1 are t_2	Some t_1 are not t_2

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・四ト ・ヨト ・ヨト

Four Kinds of Categorical Propositions

		Quantity	
		universal	particular
Quality	affirmative	All t_1 are t_2	Some t_1 are t_2
	negative	No t_1 are t_2	Some t_1 are not t_2

Example

Some cats are not brave is a *particular*, *negative* proposition.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

3

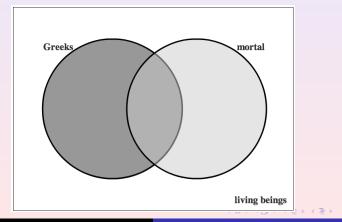
Meaning of Universal Affirmative Propositions

In a particular model $\mathcal{M},$ All Greeks are mortal means that ${\tt Greeks}^{\mathcal{M}}$ is a subset of ${\tt mortal}^{\mathcal{M}}$

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

Meaning of Universal Affirmative Propositions

In a particular model $\mathcal{M},$ All Greeks are mortal means that ${\tt Greeks}^{\mathcal{M}}$ is a subset of ${\tt mortal}^{\mathcal{M}}$



Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・雪 ト ・ヨ ト

크

More formally...

$$(\texttt{All subject} \texttt{are object})^{\mathcal{M}} = \begin{cases} T & \texttt{if subject}^{\mathcal{M}} \subseteq \textit{object}^{\mathcal{M}}, \\ F & \texttt{otherwise} \end{cases}$$

Here *T* and *F* represent the logical truth values *true* and *false*, respectively.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・ ・ 四・ ・ 回・ ・ 日・

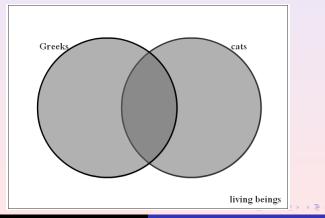
Meaning of Universal Negative Propositions

In a particular model $\mathcal{M},$ No Greeks are cats means that the intersection of ${\tt Greeks}^{\mathcal{M}}$ and of ${\tt cats}^{\mathcal{M}}$ is empty.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

Meaning of Universal Negative Propositions

In a particular model $\mathcal{M},$ No Greeks are cats means that the intersection of ${\tt Greeks}^{\mathcal{M}}$ and of ${\tt cats}^{\mathcal{M}}$ is empty.



Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

<ロ> <同> <同> < 回> < 回> < □> < □> <

臣

More formally...

$$(\text{No subject are object})^{\mathcal{M}} = \begin{cases} T & \text{if subject}^{\mathcal{M}} \cap \textit{object}^{\mathcal{M}} = \emptyset, \\ F & \text{otherwise} \end{cases}$$

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・ ・ 四・ ・ 回・ ・ 日・

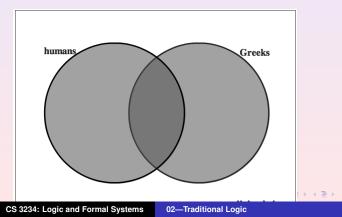
Meaning of Particular Affirmative Propositions

In a particular model \mathcal{M} , Some humans are Greeks means that the intersection of humans $^{\mathcal{M}}$ and of Greeks $^{\mathcal{M}}$ is not empty.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

Meaning of Particular Affirmative Propositions

In a particular model \mathcal{M} , some humans are Greeks means that the intersection of humans $^{\mathcal{M}}$ and of Greeks $^{\mathcal{M}}$ is not empty.



Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・四ト ・ヨト ・ヨト

臣

More formally...

$$(\text{Some subject} are object)^{\mathcal{M}} = \begin{cases} T & \text{if subject}^{\mathcal{M}} \cap object^{\mathcal{M}} \neq \emptyset, \\ F & \text{otherwise} \end{cases}$$

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

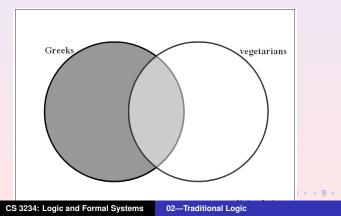
Meaning of Particular Negative Propositions

In a particular model \mathcal{M} , Some Greeks are not vegetarians means that the difference of Greeks^{\mathcal{M}} and vegetarians^{\mathcal{M}} is not empty.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

Meaning of Particular Negative Propositions

In a particular model $\mathcal{M},$ Some Greeks are not vegetarians means that the difference of $\mathsf{Greeks}^\mathcal{M}$ and vegetarians $^\mathcal{M}$ is not empty.



Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

(日)

More formally...

$(\texttt{Some subject} \texttt{are not object})^{\mathcal{M}} = \begin{cases} T & \texttt{if subject}^{\mathcal{M}} / \texttt{object}^{\mathcal{M}} \neq \emptyset, \\ F & \texttt{otherwise} \end{cases}$

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロン ・雪 > ・ 画 > ・

臣

Axioms are propositions that are assumed to hold.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・・ 日・ ・ 日・ ・ 日・

臣

Axioms are propositions that are assumed to hold.

Axiom (HM)

The proposition All humans are mortal holds.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

ヘロア ヘロア ヘビア ヘビア

臣

Axioms are propositions that are assumed to hold.

Axiom (HM)

The proposition All humans are mortal holds.

Axiom (GH)

The proposition All Greeks are humans holds.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

Graphical Notation

[HumansMortality]

・ロット (四) (日) (日)

크

All humans are mortal

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Lemmas are affirmations that follow from all known facts.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

3

Lemmas are affirmations that follow from all known facts.

Proof obligation

A lemma must be followed by a proof that demonstrates how it follows from known facts.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・・ 日・ ・ 日・ ・ 日・

臣

Trivial Example of Proof

Lemma

The proposition All humans are mortal holds.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

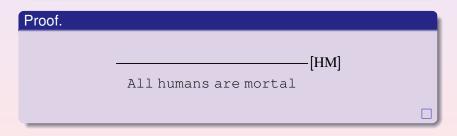
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Trivial Example of Proof

Lemma

The proposition All humans are mortal holds.



Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・・ (日・・ (日・・ 日・)

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・・ (日・・ (日・・ 日・)

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Example

$$U^{\mathcal{M}} = \{0,1\},$$
 humans $^{\mathcal{M}} = \{0\},$ mortal $^{\mathcal{M}} = \{1\}$

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロ・・ (日・・ (日・・ 日・)

э

Unusual Models

We can choose any model for our terms, also "unusual" ones.

Example

$$U^{\mathcal{M}} = \{\mathbf{0}, \mathbf{1}\}, \mathtt{humans}^{\mathcal{M}} = \{\mathbf{0}\}, \mathtt{mortal}^{\mathcal{M}} = \{\mathbf{1}\}$$

Here

All humans are mortal

does not hold.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Asserting Axioms

Purpose of axioms

By asserting an axiom *A*, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・雪 ・ ・ ヨ ・

Asserting Axioms

Purpose of axioms

By asserting an axiom *A*, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Consequence

The lemmas that we prove while utilizing an axiom only hold in the models in which the axiom holds.

Categorical Propositions Semantics of Propositions Axioms, Lemmas and Proofs

・ロト ・四ト ・ヨト ・ヨト

Asserting Axioms

Purpose of axioms

By asserting an axiom *A*, we are focusing our attention to only those models \mathcal{M} for which $A^{\mathcal{M}} = T$.

Consequence

The lemmas that we prove while utilizing an axiom only hold in the models in which the axiom holds.

Validity

A proposition is called *valid*, if it holds in all models.

Complement Conversion Contraposition Obversion Combinations

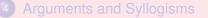
(日)

Categorical Terms and their Meaning

2 Propositions, Axioms, Lemmas, Proofs

3 Manipulating Terms and Propositions

- Complement
- Conversion
- Contraposition
- Obversion
- Combinations



Complement Conversion Contraposition Obversion Combinations

・ロン ・雪 > ・ 画 > ・

臣

We allow ourselves to put non in front of a term.

Complement Conversion Contraposition Obversion Combinations

・ロト ・四ト ・ヨト ・ヨト

We allow ourselves to put non in front of a term.

Meaning of complement

In a model \mathcal{M} , the meaning of non t is the complement of the meaning of t

Complement Conversion Contraposition Obversion Combinations

Complement

We allow ourselves to put non in front of a term.

Meaning of complement

In a model \mathcal{M} , the meaning of non t is the complement of the meaning of t

More formally

In a model \mathcal{M} , (non t) $^{\mathcal{M}} = U^{\mathcal{M}}/t^{\mathcal{M}}$

Complement Conversion Contraposition Obversion Combinations

・ロ・・ 日・ ・ 日・ ・ 日・

크

Double Complement

Axiom (NonNon)

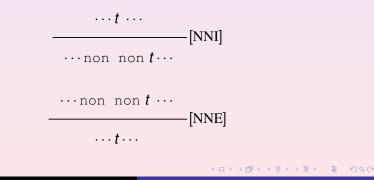
For any term t, the term non non t is considered equal to t.

Complement Conversion Contraposition Obversion Combinations

Double Complement

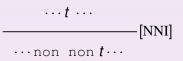
Axiom (NonNon)

For any term t, the term non non t is considered equal to t.



Complement Conversion Contraposition Obversion Combinations

Rule Schema



is a rule schema. An instance is:

Some t_1 are t_2

Some non non t_1 are t_2

臣

Complement Conversion Contraposition Obversion Combinations

(日)

Definitions

We allow ourselves to state definitions that may be convenient. Definitions are similar to axioms; they fix the properties of a particular item for the purpose of a discussion.

Complement Conversion Contraposition Obversion Combinations

(日)

Definitions

We allow ourselves to state definitions that may be convenient. Definitions are similar to axioms; they fix the properties of a particular item for the purpose of a discussion.

Definition (ImmDef)

The term immortal is considered equal to the term non mortal.

Complement Conversion Contraposition Obversion Combinations

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Writing a Proof Graphically

Lemma

The proposition All humans are non immortal holds.

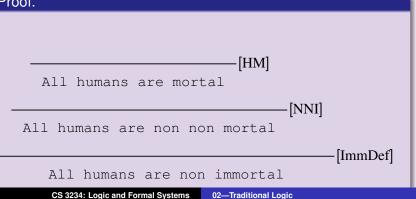
Complement Conversion Contraposition Obversion Combinations

Writing a Proof Graphically

Lemma

The proposition All humans are non immortal holds.

Proof.



Complement Conversion Contraposition Obversion Combinations

ヘロア ヘロア ヘビア ヘビア

臣

Writing a Text-based Proof

Lemma

The proposition All humans are non immortal holds.

Complement Conversion Contraposition Obversion Combinations

Writing a Text-based Proof

Lemma

The proposition All humans are non immortal holds.

Proof.								
1	All	humans	are	mort	cal	HM		
2	All	humans	are	non	non	NNI 1		
	mort	cal						
3	All	humans	are	non	immortal	ImmDef 2		

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

臣

Complement Conversion Contraposition Obversion Combinations

Conversion switches subject and object

Definition (ConvDef)

For all terms t_1 and t_2 , we define

- $convert(All t_1 are t_2) = All t_2 are t_1$
- $convert(Some t_1 are t_2) = Some t_2 are t_1$
 - $convert(No t_1 are t_2) = No t_2 are t_1$
- $convert(Some t_1 are not t_2) = Some t_2 are not t_1$

Complement Conversion Contraposition Obversion Combinations

・ロト ・回 ト ・ヨト ・ ヨト

臣

Which Conversions Hold?

lf

All Greeks are humans

holds in a model, then does

All humans are Greeks

hold?

Complement Conversion Contraposition Obversion Combinations

Valid Conversions

Axiom (ConvE1)

If, for some terms t_1 and t_2 , the proposition

convert(Some t₁ are t₂)

holds, then the proposition

Some t_1 are t_2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

also holds.

Complement Conversion Contraposition Obversion Combinations

Valid Conversions

Axiom (ConvE2)

If, for some terms t_1 and t_2 , the proposition

 $convert(No t_1 are t_2)$

holds, then the proposition

No t_1 are t_2

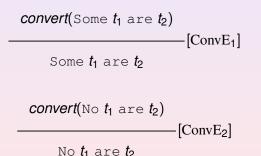
크

also holds.

Complement Conversion Contraposition Obversion Combinations

In Graphical Notation

In graphical notation, two rules correspond to the two cases.



・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

Complement Conversion Contraposition Obversion Combinations

臣

Axiom (AC)

The proposition Some animals are cats holds.

Complement Conversion Contraposition Obversion Combinations

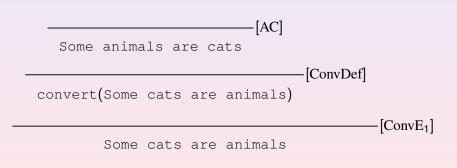
Axiom (AC)

The proposition Some animals are cats holds.

Lemma

The proposition Some cats are animals holds.

Complement Conversion Contraposition Obversion Combinations



・ロト ・四ト ・ヨト

3

Complement Conversion Contraposition Obversion Combinations

E

Example (text-based proof)

Proof.					
1	Some animals are cats	AC			
2	convert(Some cats are	ConvDef 1			
	animals)				
3	Some cats are animals	ConvE ₁ 2			

Complement Conversion Contraposition Obversion Combinations

Contraposition switches and complements

Definition (ContrDef)

For all terms t_1 and t_2 , we define

 $contrapose(All t_1 are t_2)$

- = All non t₂ are non t₁ contrapose(Some t₁ are t₂)
- = Some non t₂ are non t₁ contrapose(No t₁ are t₂)
- = No non t_2 are non t_1

contrapose(Some t_1 are not t_2)

= Some non t_2 are not non t_1

Complement Conversion Contraposition Obversion Combinations

臣

For which propositions is contraposition valid?

All t_1 are t_2

Complement Conversion Contraposition Obversion Combinations

For which propositions is contraposition valid?

ALL (1 are (2

contrapose(Some t_1 are not t_2) [ContrE₂] Some t_1 are not t_2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Complement Conversion Contraposition Obversion Combinations

Obversion switches quality and complements object

Definition (ObvDef)

For all terms t_1 and t_2 , we define

obvert(All t_1 are t_2) = No t_1 are non t_2

 $obvert(Some t_1 are t_2) = Some t_1 are not non t_2$

obvert(No t_1 are t_2) = All t_1 are non t_2

obvert(Some t_1 are not t_2) = Some t_1 are non t_2

Complement Conversion Contraposition Obversion Combinations

・ロト ・四ト ・ヨト ・ヨト

臣

Obversion switches quality and complements object

Complement Conversion Contraposition Obversion Combinations

< 日 > < 回 > < 回 > < 回 > < 回 > <

臣

Obversion switches quality and complements object

Example 1 obvert (All Greeks are humans) = No Greeks are non humans

Complement Conversion Contraposition Obversion Combinations

Obversion switches quality and complements object

obvert (All Greeks are humans)

= No Greeks are non humans

Example 2

obvert (Some animals are cats)

= Some animals are not non cats

Complement Conversion Contraposition Obversion Combinations

<ロ> <同> <同> < 回> < 回> < □> < □> <

크

Validity of Obversion

Obversion is valid for all kinds of propositions.

Axiom (ObvE)

If, for some proposition p

obvert(**p**)

holds, then the proposition p also holds.

Complement Conversion Contraposition Obversion Combinations

・ロン ・雪 > ・ 画 > ・

크

Validity of Obversion

Obversion is valid for all kinds of propositions.

Axiom (ObvE)

If, for some proposition p

obvert(**p**)

holds, then the proposition p also holds.

Complement Conversion Contraposition Obversion Combinations

æ.

Axiom (SHV)

The proposition Some humans are vegans holds.

Complement Conversion Contraposition Obversion Combinations

Axiom (SHV)

The proposition Some humans are vegans holds.

Lemma (NNVeg)

The proposition Some humans are not non vegans holds.

Complement Conversion Contraposition Obversion Combinations

Complement Conversion Contraposition Obversion Combinations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Proof (text-based)

Proof.							
1 2	Some humans are vegans Some humans are non non	SHV NNI 1					
3	vegans obvert(Some humans are not non vegans)	ObvDef 2					
4	Some humans are not non vegans	ObvE 3					
	, ,						

Complement Conversion Contraposition Obversion Combinations

ヘロト ヘロト ヘビト ヘビト

E

Another Lemma

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Complement Conversion Contraposition Obversion Combinations

・ロト ・四ト ・ヨト ・ヨト

Another Lemma

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

A lemma of the form "If p_1 then p_2 " is valid, if in every model in which the proposition p_1 holds, the proposition p_2 also holds.

Complement Conversion Contraposition Obversion Combinations

臣

Proof

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Complement Conversion Contraposition Obversion Combinations

Proof

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Proof.

- 1 Some non t_1 are non t_2
- 2 convert(Some non t_2 are non t_1)
- 3 Some non t_2 are non t_1
- 4 obvert(Some non t_2 are not t_1)
- 5 Some non t_2 are not t_1

premise ConvDef 1 ConvE₁ 2 ObvDef 3 ObvE 4

Complement Conversion Contraposition Obversion Combinations

크

"iff" means "if and only if"

Lemma (AllNonNon)

For any terms t_1 and t_2 , the proposition All non t_1 are non t_2 holds iff the proposition All t_2 are t_1 holds.

Complement Conversion Contraposition Obversion Combinations

"iff" means "if and only if"

Lemma (AllNonNon)

For any terms t_1 and t_2 , the proposition All non t_1 are non t_2 holds iff the proposition All t_2 are t_1 holds.

All non t_1 are non t_2

All t_2 are t_1

All t_2 are t_1

All non t_1 are non t_2

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

CS 3234: Logic and Formal Systems 02—Traditional Logic

Arguments Syllogisms Barbara Fun With Barbara

(日)

- Categorical Terms and their Meaning
- Propositions, Axioms, Lemmas, Proofs
- 3 Manipulating Terms and Propositions
- Arguments and Syllogisms
 - Arguments
 - Syllogisms
 - Barbara
 - Fun With Barbara

Arguments Syllogisms Barbara Fun With Barbara

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Argument

An argument has the form

If premises then conclusion

Arguments Syllogisms Barbara Fun With Barbara

・ロン ・雪 > ・ ヨ > -

크

Argument

An argument has the form

If premises then conclusion

Sometimes also

premises therefore conclusion

Arguments Syllogisms Barbara Fun With Barbara

Argument

An argument has the form

If premises then conclusion

Sometimes also

premises therefore conclusion

Example:

Lemma (SomeNon)

For all terms t_1 and t_2 , if the proposition Some non t_1 are non t_2 holds, then the proposition Some non t_2 are not t_1 also holds.

Arguments Syllogisms Barbara Fun With Barbara

・ロト ・四ト ・ヨト

A syllogism is an argument with two premises, in which three different terms occur, and in which every term occurs twice, but never twice in the same proposition.

Example

All cats are predators. Some animals are cats. Therefore, all animals are predators.

Arguments Syllogisms Barbara Fun With Barbara

[B]

(日)

Barbara

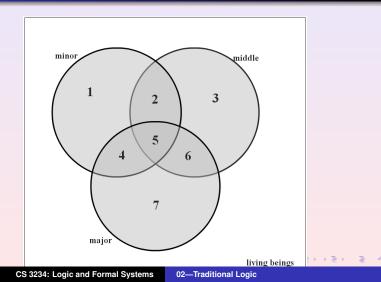
Axiom (B)

For all terms minor, middle, and major, if All middle are major holds, and All minor are middle holds, then All minor are major also holds.

All *minor* are *major*

Arguments Syllogisms Barbara Fun With Barbara

Why is Barbara valid?



Arguments Syllogisms Barbara Fun With Barbara

臣

Lemma

The proposition All Greeks are mortal holds.

CS 3234: Logic and Formal Systems 02—Traditional Logic

Arguments Syllogisms Barbara Fun With Barbara

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Lemma

The proposition All Greeks are mortal holds.

Proof.						
1	All Greeks are humans	GH				
2	All humans are mortal	HM				
3	All Greeks are mortal	B 1,2				

Arguments Syllogisms Barbara Fun With Barbara

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Officers as Poultry?

Premises

- No ducks waltz.
- No officers ever decline to waltz.
- All my poultry are ducks.

Arguments Syllogisms Barbara Fun With Barbara

(日)

Officers as Poultry?

Premises

- No ducks waltz.
- No officers ever decline to waltz.
- All my poultry are ducks.

Conclusion

No officers are my poultry.

Arguments Syllogisms Barbara Fun With Barbara

Formulation in Term Logic

Lemma (No-Officers-Are-My-Poutry)

lf

- No ducks are things-that-waltz holds,
- No officers are non things-that-waltz holds, and
- All my-poutry are ducks holds,

then No officers are my-poultry also holds.

Arguments Syllogisms Barbara Fun With Barbara

= 990

Proof

1	No officers are non	premise
0	things-that-waltz	ObyDef 1
2	obvert(All officers are things-that-waltz)	ObvDef 1
3	All officers are	ObvE 2
4	things-that-waltz) No ducks are	premise
7	things-that-waltz)	premise
5	convert(No things-that-waltz	ConvDef 4
6	are ducks) No things-that-waltz are	ConvE ₂ 5
U	ducks	CONVE2 0

Arguments Syllogisms Barbara Fun With Barbara

= 990

Proof (continued)

7	No things-that-waltz are non	NNI 6
8	non ducks obvert(All things-that-waltz	ObvDef 7
9	are non ducks) All things-that-waltz are	ObvE 8
10	non ducks All my-poultry are ducks	premise
11	All my-poultry are non non ducks	NNI 10
12	All non non my-poultry are non non ducks	NNI 11

Arguments Syllogisms Barbara Fun With Barbara

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Proof (continued)

13	contrapose(All non ducks are	ContrDef 12
14	non my-poultry) All non ducks are non	ContrE₁ 13
	my-poultry	
15	All things-that-waltz are	B 9,14
16	non my-poultry All officers are non	B 3,15
. .	my-poultry	
17	obvert(No officers are my-poultry)	ObvDef 16
18	No officers are my-poultry	ObvE 17

Arguments Syllogisms Barbara Fun With Barbara

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

- Assignment 1: out on module homepage; due 26/8, 11:00am
- Coq Homework 1: out on module homepage; due 27/8, 9:30pm
- Monday, Wednesday: Office hours
- Tuesday: Tutorials (clarification of assignment)
- Wednesday: Labs (Coq Homework 1; start earlier!)