
Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

04a—Propositional Logic II

CS 3234: Logic and Formal Systems

Martin Henz

September 2, 2010

Generated on Thursday 2nd September, 2010, 11:40

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

1 Recap: Syntax and Semantics of Propositional Logic

2 Questions

3 Conjunctive Normal Form

4 Algorithms for Satisfiability

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

1 Recap: Syntax and Semantics of Propositional Logic
Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

2 Questions

3 Conjunctive Normal Form

4 Algorithms for Satisfiability

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Atoms

Convention
We usually use p, q, p1, etc, instead of sentences like “The sun
is shining today”.

Atoms
More formally, we fix a set A of propositional atoms.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Atoms

Convention
We usually use p, q, p1, etc, instead of sentences like “The sun
is shining today”.

Atoms
More formally, we fix a set A of propositional atoms.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Meaning of Atoms

Models assign truth values
A model assigns truth values (F or T) to each atom.

More formally
A model (valuation) for a propositional logic for the set A of
atoms is a mapping from A to {T ,F}.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Meaning of Atoms

Models assign truth values
A model assigns truth values (F or T) to each atom.

More formally
A model (valuation) for a propositional logic for the set A of
atoms is a mapping from A to {T ,F}.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Inductive Definition

Definition
For a given set A of propositional atoms, the set of well-formed
formulas in propositional logic is the least set F that fulfills the
following rules:

The constant symbols ⊥ and > are in F .
Every element of A is in F .
If φ is in F , then (¬φ) is also in F .
If φ and ψ are in F , then (φ ∧ ψ) is also in F .
If φ and ψ are in F , then (φ ∨ ψ) is also in F .
If φ and ψ are in F , then (φ→ ψ) is also in F .

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Parse trees

A formula
(((¬p) ∧ q)→ (p ∧ (q ∨ (¬r))))

...and its parse tree: →

∧

¬

p

q

∧

p ∨

q ¬

r

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Parse trees

A formula
(((¬p) ∧ q)→ (p ∧ (q ∨ (¬r))))

...and its parse tree:

→

∧

¬

p

q

∧

p ∨

q ¬

r

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Parse trees

A formula
(((¬p) ∧ q)→ (p ∧ (q ∨ (¬r))))

...and its parse tree: →

∧

¬

p

q

∧

p ∨

q ¬

r

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Evaluation of Formulas

Definition
The result of evaluating a well-formed propositional formula φ
with respect to a valuation v , denoted v(φ) is defined as
follows:

If φ is the constant ⊥, then v(φ) = F .
If φ is the constant >, then v(φ) = T .
If φ is an propositional atom p, then v(φ) = pv .
If φ has the form (¬ψ), then v(φ) = \v(ψ).
If φ has the form (ψ ∧ τ), then v(φ) = v(ψ)&v(τ).
If φ has the form (ψ ∨ τ), then v(φ) = v(ψ) | v(τ).
If φ has the form (ψ → τ), then v(φ) = v(ψ)⇒ v(τ).

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Valid and Satisfiable Formulas

Definition
A formula is called valid if it evaluates to T with respect to every
possible valuation.

Definition
A formula is called satisfiable if it evaluates to T with respect to
at least one valuation.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Propositional Atoms
Syntax of Propositional Logic
Evaluation of Formulas

Valid and Satisfiable Formulas

Definition
A formula is called valid if it evaluates to T with respect to every
possible valuation.

Definition
A formula is called satisfiable if it evaluates to T with respect to
at least one valuation.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

1 Recap: Syntax and Semantics of Propositional Logic

2 Questions

3 Conjunctive Normal Form

4 Algorithms for Satisfiability

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Questions about Propositional Formula

Is a given formula valid?
Is a given formula satisfiable?
Is a given formula invalid?
Is a given formula unsatisfiable?
Are two formulas equivalent?

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Decision Problems

Definition
A decision problem is a question in some formal system with a
yes-or-no answer.

Examples
The question whether a given propositional formula is
satisifiable (unsatisfiable, valid, invalid) is a decision problem.

The question whether two given propositional formulas are
equivalent is also a decision problem.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Decision Problems

Definition
A decision problem is a question in some formal system with a
yes-or-no answer.

Examples
The question whether a given propositional formula is
satisifiable (unsatisfiable, valid, invalid) is a decision problem.

The question whether two given propositional formulas are
equivalent is also a decision problem.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

How to Solve the Decision Problem?

Question
How do you decide whether a given propositional formula is
satisfiable/valid?

The good news
We can construct a truth table for the formula and check if
some/all rows have T in the last column.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

How to Solve the Decision Problem?

Question
How do you decide whether a given propositional formula is
satisfiable/valid?

The good news
We can construct a truth table for the formula and check if
some/all rows have T in the last column.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Satisifiability is Decidable

An algorithm for satisifiability
Using a truth table, we can implement an algorithm that returns
“yes” if the formula is satisifiable, and that returns “no” if the
formula is unsatisfiable.

Decidability
Decision problems for which there is an algorithm computing
“yes” whenever the answer is “yes”, and “no” whenever the
answer is “no”, are called decidable.

Decidability of satisfiability
The question, whether a given propositional formula is
satisifiable, is decidable.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Satisifiability is Decidable

An algorithm for satisifiability
Using a truth table, we can implement an algorithm that returns
“yes” if the formula is satisifiable, and that returns “no” if the
formula is unsatisfiable.

Decidability
Decision problems for which there is an algorithm computing
“yes” whenever the answer is “yes”, and “no” whenever the
answer is “no”, are called decidable.

Decidability of satisfiability
The question, whether a given propositional formula is
satisifiable, is decidable.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Satisifiability is Decidable

An algorithm for satisifiability
Using a truth table, we can implement an algorithm that returns
“yes” if the formula is satisifiable, and that returns “no” if the
formula is unsatisfiable.

Decidability
Decision problems for which there is an algorithm computing
“yes” whenever the answer is “yes”, and “no” whenever the
answer is “no”, are called decidable.

Decidability of satisfiability
The question, whether a given propositional formula is
satisifiable, is decidable.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

The Bad News

Concern
In practice, propositional formulas can be large. Example:
http://www.comp.nus.edu.sg/˜cs3234/prop.txt

Techniques so far inadequate
Proving satisfiability/validity using truth tables or natural
deduction is impractical for large formulas.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

http://www.comp.nus.edu.sg/~cs3234/prop.txt

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

The Bad News

Concern
In practice, propositional formulas can be large. Example:
http://www.comp.nus.edu.sg/˜cs3234/prop.txt

Techniques so far inadequate
Proving satisfiability/validity using truth tables or natural
deduction is impractical for large formulas.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

http://www.comp.nus.edu.sg/~cs3234/prop.txt

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Is there a practical way of deciding satisfiability?

Question
Is there an efficient algorithm that decides whether a given
formula is satisfiable?

More precisely...
Is there a polynomial-time algorithm that decides whether a
given formula is satisfiable?

Answer
We do not know!

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Is there a practical way of deciding satisfiability?

Question
Is there an efficient algorithm that decides whether a given
formula is satisfiable?

More precisely...
Is there a polynomial-time algorithm that decides whether a
given formula is satisfiable?

Answer
We do not know!

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Is there a practical way of deciding satisfiability?

Question
Is there an efficient algorithm that decides whether a given
formula is satisfiable?

More precisely...
Is there a polynomial-time algorithm that decides whether a
given formula is satisfiable?

Answer
We do not know!

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

What do we know about satisfiability?

Truth assignment as witness
If the answer is “yes”, then a satisfying truth assignment can
serve as a proof that the answer is indeed “yes”.

Witness for satisfiability
Such a proof is called a witness.

Checking the witness
We can quickly check whether indeed the witness assignment
makes the formula true. This can be done in time proportional
to the size of the formula.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

What do we know about satisfiability?

Truth assignment as witness
If the answer is “yes”, then a satisfying truth assignment can
serve as a proof that the answer is indeed “yes”.

Witness for satisfiability
Such a proof is called a witness.

Checking the witness
We can quickly check whether indeed the witness assignment
makes the formula true. This can be done in time proportional
to the size of the formula.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

What do we know about satisfiability?

Truth assignment as witness
If the answer is “yes”, then a satisfying truth assignment can
serve as a proof that the answer is indeed “yes”.

Witness for satisfiability
Such a proof is called a witness.

Checking the witness
We can quickly check whether indeed the witness assignment
makes the formula true. This can be done in time proportional
to the size of the formula.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

The Complexity Class NP

Definition
Decision problems for which the “yes” answer has a proof that
can be checked in polynomial time, are called NP.

Origin of name
NP stands for “Non-deterministic Polynomial time”.

Original definition
NP is the set of decision problems solvable in polynomial time
by a non-deterministic Turing machine.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

The Complexity Class NP

Definition
Decision problems for which the “yes” answer has a proof that
can be checked in polynomial time, are called NP.

Origin of name
NP stands for “Non-deterministic Polynomial time”.

Original definition
NP is the set of decision problems solvable in polynomial time
by a non-deterministic Turing machine.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

The Complexity Class NP

Definition
Decision problems for which the “yes” answer has a proof that
can be checked in polynomial time, are called NP.

Origin of name
NP stands for “Non-deterministic Polynomial time”.

Original definition
NP is the set of decision problems solvable in polynomial time
by a non-deterministic Turing machine.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Some History

The class NP was introduced by Stephen Cook in 1971 at
the 3rd Annual ACM Symposium on Theory of Computing.

At the conference, there was a fierce debate whether there
could be a polynomial time algorithm to solve such
problems.
John Hopcroft convinced the delegates that the problem
should be put off to be solved at some later date.
In 1972, Richard Karp presented 21 mutually equivalent
problems in NP, for which no polynomial time algorithms
was known.
Cook and Leonid Levin proved independently that
propositional satisifiability is in this class (called
NP-complete).

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Some History

The class NP was introduced by Stephen Cook in 1971 at
the 3rd Annual ACM Symposium on Theory of Computing.
At the conference, there was a fierce debate whether there
could be a polynomial time algorithm to solve such
problems.

John Hopcroft convinced the delegates that the problem
should be put off to be solved at some later date.
In 1972, Richard Karp presented 21 mutually equivalent
problems in NP, for which no polynomial time algorithms
was known.
Cook and Leonid Levin proved independently that
propositional satisifiability is in this class (called
NP-complete).

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Some History

The class NP was introduced by Stephen Cook in 1971 at
the 3rd Annual ACM Symposium on Theory of Computing.
At the conference, there was a fierce debate whether there
could be a polynomial time algorithm to solve such
problems.
John Hopcroft convinced the delegates that the problem
should be put off to be solved at some later date.

In 1972, Richard Karp presented 21 mutually equivalent
problems in NP, for which no polynomial time algorithms
was known.
Cook and Leonid Levin proved independently that
propositional satisifiability is in this class (called
NP-complete).

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Some History

The class NP was introduced by Stephen Cook in 1971 at
the 3rd Annual ACM Symposium on Theory of Computing.
At the conference, there was a fierce debate whether there
could be a polynomial time algorithm to solve such
problems.
John Hopcroft convinced the delegates that the problem
should be put off to be solved at some later date.
In 1972, Richard Karp presented 21 mutually equivalent
problems in NP, for which no polynomial time algorithms
was known.

Cook and Leonid Levin proved independently that
propositional satisifiability is in this class (called
NP-complete).

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Some History

The class NP was introduced by Stephen Cook in 1971 at
the 3rd Annual ACM Symposium on Theory of Computing.
At the conference, there was a fierce debate whether there
could be a polynomial time algorithm to solve such
problems.
John Hopcroft convinced the delegates that the problem
should be put off to be solved at some later date.
In 1972, Richard Karp presented 21 mutually equivalent
problems in NP, for which no polynomial time algorithms
was known.
Cook and Leonid Levin proved independently that
propositional satisifiability is in this class (called
NP-complete).

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

P = NP?

Clearly P ⊆ NP

. Why?
But does NP ⊆ P hold?
To date, no proof of P = NP or P 6= NP has been
discovered.
Many computer scientists assume P 6= NP, and therefore
consider NP-complete problems as “intractable”.
Many “proofs” for one or the other answer have been
proposed, and subsequently rejected, most recently by
Vinay Deolalikar (a researcher at HP), in August 2010.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

P = NP?

Clearly P ⊆ NP. Why?

But does NP ⊆ P hold?
To date, no proof of P = NP or P 6= NP has been
discovered.
Many computer scientists assume P 6= NP, and therefore
consider NP-complete problems as “intractable”.
Many “proofs” for one or the other answer have been
proposed, and subsequently rejected, most recently by
Vinay Deolalikar (a researcher at HP), in August 2010.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

P = NP?

Clearly P ⊆ NP. Why?
But does NP ⊆ P hold?

To date, no proof of P = NP or P 6= NP has been
discovered.
Many computer scientists assume P 6= NP, and therefore
consider NP-complete problems as “intractable”.
Many “proofs” for one or the other answer have been
proposed, and subsequently rejected, most recently by
Vinay Deolalikar (a researcher at HP), in August 2010.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

P = NP?

Clearly P ⊆ NP. Why?
But does NP ⊆ P hold?
To date, no proof of P = NP or P 6= NP has been
discovered.

Many computer scientists assume P 6= NP, and therefore
consider NP-complete problems as “intractable”.
Many “proofs” for one or the other answer have been
proposed, and subsequently rejected, most recently by
Vinay Deolalikar (a researcher at HP), in August 2010.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

P = NP?

Clearly P ⊆ NP. Why?
But does NP ⊆ P hold?
To date, no proof of P = NP or P 6= NP has been
discovered.
Many computer scientists assume P 6= NP, and therefore
consider NP-complete problems as “intractable”.

Many “proofs” for one or the other answer have been
proposed, and subsequently rejected, most recently by
Vinay Deolalikar (a researcher at HP), in August 2010.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

P = NP?

Clearly P ⊆ NP. Why?
But does NP ⊆ P hold?
To date, no proof of P = NP or P 6= NP has been
discovered.
Many computer scientists assume P 6= NP, and therefore
consider NP-complete problems as “intractable”.
Many “proofs” for one or the other answer have been
proposed, and subsequently rejected, most recently by
Vinay Deolalikar (a researcher at HP), in August 2010.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

1 Recap: Syntax and Semantics of Propositional Logic

2 Questions

3 Conjunctive Normal Form

4 Algorithms for Satisfiability

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Conjunctive Normal Form

Definition
A literal L is either an atom p or the negation of an atom ¬p.
A formula C is in conjunctive normal form (CNF) if it is a
conjunction of clauses, where each clause is a disjunction of
literals:

L ::= p|¬p
D ::= L|L ∨ D
C ::= D|D ∧ C

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Examples

(¬p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r) is in CNF.
(¬p ∨ q ∨ r) ∧ ((p ∧ ¬q) ∨ r) ∧ (¬r) is not in CNF.
(¬p ∨ q ∨ r) ∧ ¬(¬q ∨ r) ∧ (¬r) is not in CNF.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Lemma
A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to disprove

|= (¬q ∨ p ∨ q) ∧ (¬p ∨ r) ∧ q

Use lemma to disprove any of:

|= (¬q ∨ p ∨ r) |= (¬p ∨ r) |= q

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Lemma
A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to disprove

|= (¬q ∨ p ∨ q) ∧ (¬p ∨ r) ∧ q

Use lemma to disprove any of:

|= (¬q ∨ p ∨ r) |= (¬p ∨ r) |= q

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Lemma
A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to disprove

|= (¬q ∨ p ∨ q) ∧ (¬p ∨ r) ∧ q

Use lemma to disprove any of:

|= (¬q ∨ p ∨ r) |= (¬p ∨ r) |= q

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Lemma
A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to prove

|= (¬q ∨ p ∨ q) ∧ (p ∨ r¬p) ∧ (r ∨ ¬r)

Use lemma to prove all of:

|= (¬q ∨ p ∨ q) |= (p ∨ r¬p) |= (r ∨ ¬r)

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Lemma
A disjunction of literals L1 ∨ L2 ∨ · · · ∨ Lm is valid iff there are
1 ≤ i , j ≤ m such that Li is ¬Lj .

How to prove

|= (¬q ∨ p ∨ q) ∧ (p ∨ r¬p) ∧ (r ∨ ¬r)

Use lemma to prove all of:

|= (¬q ∨ p ∨ q) |= (p ∨ r¬p) |= (r ∨ ¬r)

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Proposition
Let φ be a formula of propositional logic. Then φ is satisfiable iff
¬φ is not valid.

Satisfiability test
We can test satisfiability of φ by transforming ¬φ into CNF, and
show that some clause is not valid.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Usefulness of CNF

Proposition
Let φ be a formula of propositional logic. Then φ is satisfiable iff
¬φ is not valid.

Satisfiability test
We can test satisfiability of φ by transforming ¬φ into CNF, and
show that some clause is not valid.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Transformation to CNF

Theorem
Every formula in the propositional calculus can be transformed
into an equivalent formula in CNF.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithm for CNF Transformation

1 Eliminate implication using:
A→ B ≡ ¬A ∨ B

2 Push all negations inward using De Morgan’s laws:
¬(A ∧ B) ≡ (¬A ∨ ¬B)
¬(A ∨ B) ≡ (¬A ∧ ¬B)

3 Eliminate double negations using the equivalence ¬¬A ≡ A
4 The formula now consists of disjunctions and conjunctions

of literals. Use the distributive laws
A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)
(A ∧ B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)
to eliminate conjunctions within disjunctions.

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Example

(¬p → ¬q)→ (p → q) ≡ ¬(¬¬p ∨ ¬q) ∨ (¬p ∨ q)
≡ (¬¬¬p ∧ q) ∨ (¬p ∨ q)
≡ (¬p ∧ q) ∨ (¬p ∨ q)
≡ (¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q)

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf

Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer

example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL

Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas;

example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise;

example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

Recap: Syntax and Semantics of Propositional Logic
Questions

Conjunctive Normal Form
Algorithms for Satisfiability

Algorithms for Proving Satisfiability of ψ

Transform ¬ψ into Conjunctive Normal Form ncnf and
prove validity (non-validity) of ncnf
Transform ψ into Conjunctive Normal Form cnf and search
for a satisfying valuation

Complete algorithms: guaranteed to terminate with correct
answer
example: DPLL
Incomplete algorithms: Return “yes” for some satisfiable
formulas, and run forever for other satisfiable formulas and
all unsatisfiable formulas; example: WalkSAT

Transform ψ into DAG; return “yes” for some satisfiable
formulas, return “no” for some unsatisfiable formulas,
return “don’t know” otherwise; example:
propagation-based linear solver

CS 3234: Logic and Formal Systems 04a—Propositional Logic II

	Recap: Syntax and Semantics of Propositional Logic
	Propositional Atoms
	Syntax of Propositional Logic
	Evaluation of Formulas

	Questions
	Conjunctive Normal Form
	Algorithms for Satisfiability

