04b—Predicate Logic

CS 3234: Logic and Formal Systems

Martin Henz

September 2, 2010

Generated on Tuesday 14th September, 2010, 11:30

CS 3234: Logic and Formal Systems

04b—Predicate Logic

- Syntax of Predicate Logic
- 2 Predicate Logic as a Formal Language
- 3 Semantics of Predicate Logic

Need for Richer Language Predicates Variables Functions

- Syntax of Predicate Logic
 - Need for Richer Language
 - Predicates
 - Variables
 - Functions
- Predicate Logic as a Formal Language
- Semantics of Predicate Logic

Syntax of Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic **Need for Richer Language** Predicates Variables **Functions**

More Declarative Sentences

Propositional logic can easily handle simple declarative statements such as:

Example

Student Peter Lim enrolled in CS3234.

 Propositional logic can also handle combinations of such statements such as:

Example

Student Peter Lim enrolled in Tutorial 1. and student Julie Bradshaw is enrolled in Tutorial 2.

But: How about statements with "there exists..." or "every..." or "among..."?

Syntax of Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic **Need for Richer Language** Predicates Variables **Functions**

What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

These are *properties* of elements of a *set* of objects.

We express them in predicate logic using *predicates*.

Syntax of Predicate Logic
Predicate Logic as a Formal Language

Need for Richer Language Predicates Variables Functions

Semantics of Predicate Logic

Predicates

Example

Every student is younger than some instructor.

- S(andy) could denote that Andy is a student.
- I(paul) could denote that Paul is an instructor.
- Y(andy, paul) could denote that Andy is younger than Paul.

Need for Richer Language Predicates Variables Functions

The Need for Variables

Example

Every student is younger than some instructor.

We use the predicate *S* to denote student-hood. How do we express "every student"?

We need *variables* that can stand for constant values, and a *quantifier* symbol that denotes "every".

Need for Richer Language Predicates Variables Functions

The Need for Variables

Example

Every student is younger than some instructor.

Using variables and quantifiers, we can write:

$$\forall x(S(x) \rightarrow (\exists y(I(y) \land Y(x,y)))).$$

Literally: For every x, if x is a student, then there is some y such that y is an instructor and x is younger than y.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

Another Example

English

Not all birds can fly.

Predicates

B(x): x is a bird

F(x): x can fly

The sentence in predicate logic

$$\neg(\forall x(B(x) \rightarrow F(x)))$$

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

A Third Example

English

Every girl is younger than her mother.

Predicates

G(x): x is a girl

M(x, y): x is y's mother

Y(x, y): x is younger than y

The sentence in predicate logic

$$\forall x \forall y (G(x) \land M(y,x) \rightarrow Y(x,y))$$

Semantics of Predicate Logic

A "Mother" Function

The sentence in predicate logic

$$\forall x \forall y (G(x) \land M(y,x) \rightarrow Y(x,y))$$

Note that y is only introduced to denote the mother of x.

If everyone has exactly one mother, the predicate M(y,x) is a function, when read from right to left.

We introduce a function symbol m that can be applied to variables and constants as in

$$\forall x(G(x) \rightarrow Y(x, m(x)))$$

Need for Richer Language Predicates Variables **Functions**

A Drastic Example

English

Andy and Paul have the same maternal grandmother.

The sentence in predicate logic without functions

$$\forall x \forall y \forall u \forall v (M(x, y) \land M(y, andy) \land M(u, v) \land M(v, paul) \rightarrow x = u)$$

The same sentence in predicate logic with functions

$$m(m(andy)) = m(m(paul))$$

Need for Richer Language Predicates Variables Functions

Outlook

Syntax: We formalize the language of predicate logic, including scoping and substitution.

Semantics: We describe models in which predicates, functions, and formulas have meaning.

Proof theory: We extend natural deduction from propositional to predicate logic (next week)

Further topics: Soundness/completeness, undecidability, incompleteness results, compactness results

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

- Syntax of Predicate Logic
- 2 Predicate Logic as a Formal Language
 - Predicate and Functions Symbols
 - Terms
 - Formulas
 - Variable Binding and Substitution
- Semantics of Predicate Logic

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Predicate Vocabulary

At any point in time, we want to describe the features of a particular "world", using predicates, functions, and constants. Thus, we introduce for this world:

- ullet a set of predicate symbols ${\cal P}$
- ullet a set of function symbols ${\mathcal F}$

Arity of Functions and Predicates

Every function symbol in \mathcal{F} and predicate symbol in \mathcal{P} comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case: Nullary Functions

Function symbols with arity 0 are called *constants*.

Special case: Nullary Predicates

Predicate symbols with arity 0 denotes predicates that do not depend on any arguments. They correspond to propositional atoms.

Terms

$$t ::= x \mid c \mid f(t,\ldots,t)$$

where

- x ranges over a given set of variables V,
- c ranges over nullary function symbols in \mathcal{F} , and
- f ranges over function symbols in \mathcal{F} with arity n > 0.

Examples of Terms

If n is nullary, f is unary, and g is binary, then examples of terms are:

- \circ g(f(n), n)
- \circ f(g(n, f(n)))

More Examples of Terms

If 0, 1, 2 are nullary (constants), s is unary, and +, - and * are binary, then

$$*(-(2,+(s(x),y)),x)$$

is a term.

Occasionally, we allow ourselves to use infix notation for function symbols as in

$$(2-(s(x)+y))*x$$

Formulas

$$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

where

- $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 0$,
- t are terms over \mathcal{F} and \mathcal{V} , and
- x are variables in \mathcal{V} .

Conventions

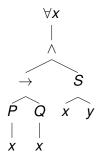
Just like for propositional logic, we introduce convenient conventions to reduce the number of parentheses:

- $\circ \neg, \forall x \text{ and } \exists x \text{ bind most tightly};$
- then \wedge and \vee ;
- then →, which is right-associative.

Parse Trees

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

has parse tree



Another Example

Every son of my father is my brother.

Predicates

S(x, y): x is a son of y

B(x, y): x is a brother of y

Functions

m: constant for "me"

f(x): father of x

The sentence in predicate logic

$$\forall x(S(x,f(m)) \rightarrow B(x,m))$$

Does this formula hold?

CS 3234: Logic and Formal Systems

04b—Predicate Logic

Equality as Predicate

Equality is a common predicate, usually used in infix notation.

$$=\in \mathcal{P}$$

Example

Instead of the formula

$$=(f(x),g(x))$$

we usually write the formula

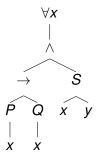
$$f(x) = g(x)$$

Free and Bound Variables

Consider the formula

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

What is the relationship between variable "binder" *x* and occurrences of *x*?

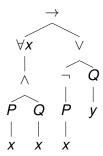


Free and Bound Variables

Consider the formula

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Which variable occurrences are free; which are bound?



Substitution

Variables are *place*holders. Re*plac*ing them by terms is called *substitution*.

Definition

Given a variable x, a term t and a formula ϕ , we define $[x \Rightarrow t]\phi$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t.

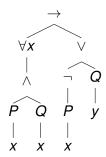
Example

$$[x \Rightarrow f(x,y)]((\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))$$

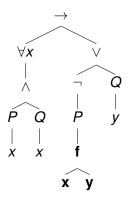
= $\forall x (P(x) \land Q(x))) \to (\neg P(f(x,y)) \lor Q(y))$

Example as Parse Tree

$$[x \Rightarrow f(x,y)]((\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))$$
$$= (\forall x (P(x) \land Q(x))) \to (\neg P(f(x,y)) \lor Q(y))$$



Example as Parse Tree



Capturing in $[x \Rightarrow t]\phi$

Problem

t contains variable y and x occurs under the scope of $\forall y$ in ϕ

Example

$$[x \Rightarrow f(y,y)](S(x) \land \forall y(P(x) \rightarrow Q(y)))$$

$$\uparrow \\ S \quad \forall y \\ | \quad | \\ X \quad \rightarrow \\ P \quad Q \\ | \quad |$$

CS 3234: Logic and Formal Systems

04b—Predicate Logic

Avoiding Capturing

Definition

Given a term t, a variable x and a formula ϕ , we say that t is free for x in ϕ if no free x leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

Free-ness as precondition

In order to compute $[x \Rightarrow t]\phi$, we demand that t is free for x in ϕ .

What if not?

Rename the bound variable!

Example of Renaming

$$[x \Rightarrow f(y,y)](S(x) \land \forall y (P(x) \rightarrow Q(y)))$$
 \Downarrow
 $[x \Rightarrow f(y,y)](S(x) \land \forall z (P(x) \rightarrow Q(z)))$
 \Downarrow
 $S(f(y,y)) \land \forall z (P(f(y,y)) \rightarrow Q(z))$

- Syntax of Predicate Logic
- Predicate Logic as a Formal Language
- 3 Semantics of Predicate Logic
 - Models
 - Equality
 - Free Variables
 - Satisfaction and Entailment

Models

Definition

Let \mathcal{F} contain function symbols and \mathcal{P} contain predicate symbols. A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- 1 A non-empty set A, the universe;
- ② for each nullary function symbol $f \in \mathcal{F}$ a concrete element $f^{\mathcal{M}} \in A$;
- ③ for each $f \in F$ with arity n > 0, a concrete function $f^{\mathcal{M}}: A^n \to A$;
- **④** for each P ∈ P with arity n > 0, a function $P^{\mathcal{M}}: U^n \to \{F, T\}$.
- ⑤ for each $P \in \mathcal{P}$ with arity n = 0, a value from $\{F, T\}$.

Example

Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

- ① Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Example (continued)

- ① Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

- 10001
- \circ ϵ
- \bullet 1010 · $^{\mathcal{M}}$ 1100 = 10101100
- \circ 000 · $^{\mathcal{M}}$ ϵ = 000

Equality Revisited

Interpretation of equality

Usually, we require that the equality predicate = is interpreted as same-ness.

Extensionality restriction

This means that allowable models are restricted to those in which $a = {}^{\mathcal{M}} b$ holds if and only if a and b are the same elements of the model's universe.

Example (continued)

- ① Let A be the set of binary strings over the alphabet $\{0,1\}$;
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- 4 let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Equality in \mathcal{M}

- 000 = 000
- $001 \neq^{\mathcal{M}} 100$

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

- 1 Let A be the set of natural numbers;
- ② let $z^{\mathcal{M}} = 0$;
- 3 let $s^{\mathcal{M}}$ be defined such that s(n) = n + 1; and
- 4 let $\leq^{\mathcal{M}}$ be defined such that $n_1 \leq^{\mathcal{M}} n_2$ iff the natural number n_1 is less than or equal to n_2 .

How To Handle Free Variables?

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

$$I: \mathcal{V} \to A$$
.

Environment extension

We define environment extension such that $I[x \mapsto a]$ is the environment that maps x to a and any other variable y to I(y).

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment I, written $\mathcal{M} \models_I \phi$:

- in case ϕ is of the form $P(t_1, t_2, \dots, t_n)$, if a_1, a_2, \dots, a_n are the results of evaluating t_1, t_2, \dots, t_n with respect to I, and if $P^{\mathcal{M}}(a_1, a_2, \dots, a_n) = T$;
- in case ϕ is of the form P, if $P^{\mathcal{M}} = T$;
- in case ϕ has the form $\forall x \psi$, if the $\mathcal{M} \models_{I[x \mapsto a]} \psi$ holds for all $a \in A$;
- in case ϕ has the form $\exists x \psi$, if the $\mathcal{M} \models_{I[x \mapsto a]} \psi$ holds for some $a \in A$:

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \vee \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and
- in case ϕ has the form $\psi_1 \to \psi_2$, if $\mathcal{M} \models_I \psi_2$ holds whenever $\mathcal{M} \models_I \psi_1$ holds.

Models Equality Free Variables Satisfaction and Entailment

Satisfaction of Closed Formulas

If a formula ϕ has no free variables, we call ϕ a *sentence*. $\mathcal{M} \models_I \phi$ holds or does not hold regardless of the choice of I. Thus we write $\mathcal{M} \models \phi$ or $\mathcal{M} \not\models \phi$.

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

 $\Gamma \models \psi$ iff for all models \mathcal{M} and environments I, whenever $\mathcal{M} \models_I \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_I \psi$.

Satisfiability of Formulas

 ψ is satisfiable iff there is some model \mathcal{M} and some environment I such that $\mathcal{M} \models_I \psi$ holds.

Satisfiability of Formula Sets

 Γ is satisfiable iff there is some model \mathcal{M} and some environment I such that $\mathcal{M} \models_I \phi$, for all $\phi \in \Gamma$.

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Validity

 ψ is valid iff for all models \mathcal{M} and environments I, we have $\mathcal{M} \models_I \psi$.

The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \dots, \phi_n \models \psi$ requires that in *all* models that satisfy $\phi_1, \phi_2, \dots, \phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?

Admin

- Coq Homework 2: out on module homepage; due 10/9, 9:30pm
- Assignment 3: out soon; due 9/9, 11:00am
- Monday, Wednesday: Office hours
- Tuesday: Tutorials (Assignments 2 and 3)
- Wednesday: Labs (Quiz 1 solution, Coq Homework 2)
- Thursday: Lecture on