04b—Predicate Logic

CS 3234: Logic and Formal Systems

Martin Henz

September 2, 2010

Generated on Tuesday 14th September, 2010, 11:30

CS 3234: Logic and Formal Systems 04b—Predicate Logic

- Predicate Logic as a Formal Language
- Semantics of Predicate Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

(日)

Syntax of Predicate Logic

- Need for Richer Language
- Predicates
- Variables
- Functions
- Predicate Logic as a Formal Language
- 3 Semantics of Predicate Logic

Need for Richer Language Predicates Variables Functions

크

More Declarative Sentences

Propositional logic can easily handle simple declarative statements such as:

Example

Student Peter Lim enrolled in CS3234.

Need for Richer Language Predicates Variables Functions

・ロト ・雪 ・ ・ ヨ ・

More Declarative Sentences

Propositional logic can easily handle simple declarative statements such as:

Example

Student Peter Lim enrolled in CS3234.

 Propositional logic can also handle combinations of such statements such as:

Example

Student Peter Lim enrolled in Tutorial 1, *and* student Julie Bradshaw is enrolled in Tutorial 2.

Need for Richer Language Predicates Variables Functions

More Declarative Sentences

Propositional logic can easily handle simple declarative statements such as:

Example

Student Peter Lim enrolled in CS3234.

 Propositional logic can also handle combinations of such statements such as:

Example

Student Peter Lim enrolled in Tutorial 1, *and* student Julie Bradshaw is enrolled in Tutorial 2.

• *But:* How about statements with *"there exists..."* or *"every..."* or *"among..."*?

・ロ・ ・ 四・ ・ 回・ ・ 日・

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

What is needed?

Example

Every student is younger than some instructor.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロン ・四 ・ ・ 回 ・ ・ 日 ・

크

What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・四ト ・ヨト

What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

These are *properties* of elements of a *set* of objects.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

(日)

What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

These are *properties* of elements of a *set* of objects.

We express them in predicate logic using *predicates*.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Predicates

Example

Every student is younger than some instructor.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Predicates

Example

Every student is younger than some instructor.

- S(andy) could denote that Andy is a student.
- *I*(*paul*) could denote that Paul is an instructor.
- Y(andy, paul) could denote that Andy is younger than Paul.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

The Need for Variables

Example

Every student is younger than some instructor.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

The Need for Variables

Example

Every student is younger than some instructor.

We use the predicate *S* to denote student-hood.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

The Need for Variables

Example

Every student is younger than some instructor.

We use the predicate *S* to denote student-hood. How do we express *"every student"*?

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

The Need for Variables

Example

Every student is younger than some instructor.

We use the predicate *S* to denote student-hood. How do we express *"every student"*?

We need *variables* that can stand for constant values, and a *quantifier* symbol that denotes *"every"*.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

The Need for Variables

Example

Every student is younger than some instructor.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Syntax of Predicate Logic Predicate Logic as a Formal Language

Semantics of Predicate Logic

Need for Richer Language Predicates Variables Functions

(日)

The Need for Variables

Example

Every student is younger than some instructor.

Using variables and quantifiers, we can write:

$$\forall x(\mathcal{S}(x) \to (\exists y(I(y) \land Y(x,y)))).$$

Literally: For every x, if x is a student, then there is some y such that y is an instructor and x is younger than y.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・四ト ・ヨト ・ヨト

臣

Another Example

English

Not all birds can fly.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

ヘロン ヘロン ヘビン ヘビン

臣

Another Example

English

Not all birds can fly.

Predicates

B(x): x is a bird F(x): x can fly

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

크

Another Example

English

Not all birds can fly.

Predicates

B(x): x is a bird F(x): x can fly

The sentence in predicate logic

```
\neg(\forall x(B(x) \rightarrow F(x)))
```

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

臣

A Third Example

English

Every girl is younger than her mother.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

A Third Example

English

Every girl is younger than her mother.

Predicates

G(x): x is a girl M(x, y): x is y's mother Y(x, y): x is younger than y

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

(日)

A Third Example

English

Every girl is younger than her mother.

Predicates

G(x): x is a girl M(x, y): x is y's mother Y(x, y): x is younger than y

The sentence in predicate logic

$$\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))$$

Need for Richer Language Predicates Variables Functions

A "Mother" Function

The sentence in predicate logic

 $\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))$

Note that *y* is only introduced to denote the mother of *x*.

Need for Richer Language Predicates Variables Functions

3

A "Mother" Function

The sentence in predicate logic

 $\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))$

Note that *y* is only introduced to denote the mother of *x*.

If everyone has exactly one mother, the predicate M(y, x) is a function, when read from right to left.

Need for Richer Language Predicates Variables Functions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

A "Mother" Function

The sentence in predicate logic

 $\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))$

Note that *y* is only introduced to denote the mother of *x*.

If everyone has exactly one mother, the predicate M(y, x) is a function, when read from right to left.

We introduce a function symbol m that can be applied to variables and constants as in

$$\forall x(G(x) \rightarrow Y(x, m(x)))$$

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

ヘロン ヘロン ヘビン ヘビン

크

A Drastic Example

English

Andy and Paul have the same maternal grandmother.

Syntax of Predicate Logic Predicate Logic as a Formal Language

Semantics of Predicate Logic

Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 日・

A Drastic Example

English

Andy and Paul have the same maternal grandmother.

The sentence in predicate logic without functions

 $\forall x \forall y \forall u \forall v (M(x, y) \land M(y, andy) \land M(u, v) \land M(v, paul) \rightarrow x = u)$

Syntax of Predicate Logic Predicate Logic as a Formal Language

Semantics of Predicate Logic

Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 回・

A Drastic Example

English

Andy and Paul have the same maternal grandmother.

The sentence in predicate logic without functions

 $\forall x \forall y \forall u \forall v (M(x, y) \land M(y, andy) \land M(u, v) \land M(v, paul) \rightarrow x = u)$

The same sentence in predicate logic with functions

m(m(andy)) = m(m(paul))

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・・ (日・・ (日・・ 日・)

크

Outlook

Syntax: We formalize the language of predicate logic, including scoping and substitution.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・・ (日・・ (日・・ 日・)

Outlook

Syntax: We formalize the language of predicate logic, including scoping and substitution.

Semantics: We describe models in which predicates, functions, and formulas have meaning.

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Outlook

Syntax: We formalize the language of predicate logic, including scoping and substitution.

- Semantics: We describe models in which predicates, functions, and formulas have meaning.
- Proof theory: We extend natural deduction from propositional to predicate logic (next week)

Predicate Logic as a Formal Language Semantics of Predicate Logic Need for Richer Language Predicates Variables Functions

・ロ・ ・ 四・ ・ 回・ ・ 回・

Outlook

- Syntax: We formalize the language of predicate logic, including scoping and substitution.
- Semantics: We describe models in which predicates, functions, and formulas have meaning.
- Proof theory: We extend natural deduction from propositional to predicate logic (next week)
- Further topics: Soundness/completeness, undecidability, incompleteness results, compactness results

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Syntax of Predicate Logic

Predicate Logic as a Formal Language

- Predicate and Functions Symbols
- Terms
- Formulas
- Variable Binding and Substitution

3 Semantics of Predicate Logic
Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Predicate Vocabulary

At any point in time, we want to describe the features of a particular "world", using predicates, functions, and constants. Thus, we introduce for this world:

• a set of predicate symbols ${\cal P}$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 回・

Predicate Vocabulary

At any point in time, we want to describe the features of a particular "world", using predicates, functions, and constants. Thus, we introduce for this world:

- a set of predicate symbols ${\cal P}$
- a set of function symbols ${\cal F}$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

Arity of Functions and Predicates

Every function symbol in \mathcal{F} and predicate symbol in \mathcal{P} comes with a fixed arity, denoting the number of arguments the symbol can take.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Arity of Functions and Predicates

Every function symbol in \mathcal{F} and predicate symbol in \mathcal{P} comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case: Nullary Functions

Function symbols with arity 0 are called *constants*.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Arity of Functions and Predicates

Every function symbol in \mathcal{F} and predicate symbol in \mathcal{P} comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case: Nullary Functions

Function symbols with arity 0 are called *constants*.

Special case: Nullary Predicates

Predicate symbols with arity 0 denotes predicates that do not depend on any arguments.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Arity of Functions and Predicates

Every function symbol in \mathcal{F} and predicate symbol in \mathcal{P} comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case: Nullary Functions

Function symbols with arity 0 are called *constants*.

Special case: Nullary Predicates

Predicate symbols with arity 0 denotes predicates that do not depend on any arguments. They correspond to propositional atoms.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(ロ) (部) (E) (E) E のQC

Terms

$t ::= x \mid c \mid f(t, \ldots, t)$

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

æ.

$$t ::= x \mid c \mid f(t, \ldots, t)$$

where

• x ranges over a given set of variables V,

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

$$t ::= x \mid c \mid f(t, \ldots, t)$$

where

- x ranges over a given set of variables V,
- c ranges over nullary function symbols in \mathcal{F} , and

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

$$t ::= x \mid c \mid f(t, \ldots, t)$$

where

- x ranges over a given set of variables V,
- c ranges over nullary function symbols in \mathcal{F} , and
- *f* ranges over function symbols in \mathcal{F} with arity n > 0.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

臣

Examples of Terms

If n is nullary, f is unary, and g is binary, then examples of terms are:

- *g*(*f*(*n*), *n*)
- *f*(*g*(*n*, *f*(*n*)))

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

More Examples of Terms

If 0, 1, 2 are nullary (constants), \boldsymbol{s} is unary, and +,- and \ast are binary, then

$$*(-(2,+(s(x),y)),x)$$

is a term.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

More Examples of Terms

If 0, 1, 2 are nullary (constants), \boldsymbol{s} is unary, and +,- and \ast are binary, then

 $\ast(-(2,+(s(x),y)),x)$

is a term.

Occasionally, we allow ourselves to use infix notation for function symbols as in

$$(2-(s(x)+y))*x$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Formulas

$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\forall x \phi) \mid (\exists x \phi)$

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Formulas

$$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

where

• $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 0$,

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Formulas

$$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

where

- $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 0$,
- *t* are terms over \mathcal{F} and \mathcal{V} , and

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Formulas

$$\phi ::= P(t, \dots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

where

- $P \in \mathcal{P}$ is a predicate symbol of arity $n \ge 0$,
- *t* are terms over \mathcal{F} and \mathcal{V} , and
- x are variables in \mathcal{V} .

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

3

Conventions

Just like for propositional logic, we introduce convenient conventions to reduce the number of parentheses:

- \neg , $\forall x$ and $\exists x$ bind most tightly;
- then \wedge and \lor ;
- then \rightarrow , which is right-associative.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Parse Trees

$\forall x((P(x) \rightarrow Q(x)) \land S(x, y))$

has parse tree

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Another Example

Every son of my father is my brother.

Predicates

S(x, y): x is a son of y

B(x, y): x is a brother of y

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・四ト ・ヨト ・ヨト

Another Example

Every son of my father is my brother.

S(x, y): x is a son of yB(x, y): x is a brother of y

Functions

m: constant for "me"

f(x): father of x

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Another Example

Every son of my father is my brother.

Predicates S(x, y): x is a son of y B(x, y): x is a brother of y

Functions

m: constant for "me"

f(x): father of x

The sentence in predicate logic

$$\forall x(S(x,f(m)) \rightarrow B(x,m))$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Another Example

Every son of my father is my brother.

Predicates S(x, y): x is a son of y B(x, y): x is a brother of y

Functions

m: constant for "me"

f(x): father of x

The sentence in predicate logic

$$\forall x(S(x,f(m)) \rightarrow B(x,m))$$

Does this formula hold?

CS 3234: Logic and Formal Systems

04b—Predicate Logic

(日)

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・雪 ・ ・ ヨ ・

æ.

Equality as Predicate

Equality is a common predicate, usually used in infix notation.

 $=\in \mathcal{P}$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

臣

Equality as Predicate

Equality is a common predicate, usually used in infix notation.

 $=\in \mathcal{P}$

Example

Instead of the formula

$$=(f(x),g(x))$$

we usually write the formula

$$f(x)=g(x)$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Free and Bound Variables

Consider the formula

 $\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

크

Free and Bound Variables

Consider the formula

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

What is the relationship between variable "binder" x and occurrences of x?

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・雪 ・ ・ ヨ ・

æ.

Free and Bound Variables

Consider the formula

$$\forall x((P(x) \rightarrow Q(x)) \land S(x,y))$$

What is the relationship between variable "binder" x and occurrences of x?

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Free and Bound Variables

Consider the formula

 $(\forall x(P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Free and Bound Variables

Consider the formula

 $(\forall x(P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

Which variable occurrences are free; which are bound?

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロン ・雪 と ・ ヨ と

臣

Free and Bound Variables

Consider the formula

$$(\forall x(P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Which variable occurrences are free; which are bound?

Substitution

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Variables are *place*holders. Re*plac*ing them by terms is called *substitution*.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロ・ ・ 四・ ・ 回・ ・ 回・

Substitution

Variables are *place*holders. Re*plac*ing them by terms is called *substitution*.

Definition

Given a variable *x*, a term *t* and a formula ϕ , we define $[x \Rightarrow t]\phi$ to be the formula obtained by replacing each free occurrence of variable *x* in ϕ with *t*.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Substitution

Variables are *place*holders. Re*plac*ing them by terms is called *substitution*.

Definition

Given a variable *x*, a term *t* and a formula ϕ , we define $[x \Rightarrow t]\phi$ to be the formula obtained by replacing each free occurrence of variable *x* in ϕ with *t*.

Example

$$[x \Rightarrow f(x, y)]((\forall x(P(x) \land Q(x))) \to (\neg P(x) \lor Q(y)))$$
$$= \forall x(P(x) \land Q(x))) \to (\neg P(f(x, y)) \lor Q(y))$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Example as Parse Tree

$$egin{aligned} &[x \Rightarrow f(x,y)]((orall x(P(x) \land Q(x))) o (
eg P(x) \lor Q(y))) \ &= (orall x(P(x) \land Q(x))) o (
eg P(f(x,y)) \lor Q(y)) \end{aligned}$$

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

臣

Example as Parse Tree

$$egin{aligned} &[x \Rightarrow f(x,y)]((orall x(P(x) \land Q(x))) o (
eg P(x) \lor Q(y))) \ &= (orall x(P(x) \land Q(x))) o (
eg P(f(x,y)) \lor Q(y)) \end{aligned}$$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Example as Parse Tree

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

Capturing in $[x \Rightarrow t]\phi$

Problem

t contains variable *y* and *x* occurs under the scope of $\forall y$ in ϕ

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Capturing in $[x \Rightarrow t]\phi$

Problem

t contains variable *y* and *x* occurs under the scope of $\forall y$ in ϕ

Example

 $[x \Rightarrow f(y, y)](S(x) \land \forall y(P(x) \rightarrow Q(y)))$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

Capturing in $[x \Rightarrow t]\phi$

Problem

t contains variable *y* and *x* occurs under the scope of $\forall y$ in ϕ

Example

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Avoiding Capturing

Definition

Given a term *t*, a variable *x* and a formula ϕ , we say that *t* is free for *x* in ϕ if no free *x* leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable *y* occurring in *t*.

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

ヘロト ヘロト ヘヨト

Avoiding Capturing

Definition

Given a term *t*, a variable *x* and a formula ϕ , we say that *t* is free for *x* in ϕ if no free *x* leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable *y* occurring in *t*.

Free-ness as precondition

In order to compute $[x \Rightarrow t]\phi$, we demand that *t* is free for *x* in ϕ .

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Avoiding Capturing

Definition

Given a term *t*, a variable *x* and a formula ϕ , we say that *t* is free for *x* in ϕ if no free *x* leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable *y* occurring in *t*.

Free-ness as precondition

In order to compute $[x \Rightarrow t]\phi$, we demand that *t* is free for *x* in ϕ .

What if not?

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

(日)

Avoiding Capturing

Definition

Given a term *t*, a variable *x* and a formula ϕ , we say that *t* is free for *x* in ϕ if no free *x* leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable *y* occurring in *t*.

Free-ness as precondition

In order to compute $[x \Rightarrow t]\phi$, we demand that *t* is free for *x* in ϕ .

What if not?

Rename the bound variable!

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

ヘロト ヘロト ヘビト ヘビト

臣

Example of Renaming

 $[x \Rightarrow f(y, y)](S(x) \land \forall y(P(x) \to Q(y)))$

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

ヘロト ヘロト ヘビト ヘビト

臣

Example of Renaming

 $[x \Rightarrow f(y, y)](S(x) \land \forall y(P(x) \to Q(y)))$

₩

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Example of Renaming

$$[x \Rightarrow f(y,y)](S(x) \land \forall y(P(x) \to Q(y)))$$

₩

$[x \Rightarrow f(y,y)](S(x) \land \forall z(P(x) \to Q(z)))$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Example of Renaming

$$[x \Rightarrow f(y,y)](S(x) \land \forall y(P(x) \to Q(y)))$$

₩

$[x \Rightarrow f(y,y)](S(x) \land \forall z(P(x) \rightarrow Q(z)))$

Predicate and Functions Symbols Terms Formulas Variable Binding and Substitution

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Example of Renaming

$$S(f(y,y)) \land \forall z(P(f(y,y)) \to Q(z))$$

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Syntax of Predicate Logic

2 Predicate Logic as a Formal Language

3 Semantics of Predicate Logic

- Models
- Equality
- Free Variables
- Satisfaction and Entailment

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Models

Definition

Let \mathcal{F} contain function symbols and \mathcal{P} contain predicate symbols. A model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- A non-empty set A, the universe;
- If for each nullary function symbol *f* ∈ *F* a concrete element *f*^M ∈ *A*;
- 3 for each $f \in F$ with arity n > 0, a concrete function $f^{\mathcal{M}} : A^n \to A$;
- for each $P \in \mathcal{P}$ with arity n > 0, a function $P^{\mathcal{M}} : U^n \to \{F, T\}.$
- for each $P \in \mathcal{P}$ with arity n = 0, a value from $\{F, T\}$.

Models Equality Free Variables Satisfaction and Entailment

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Example

Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Models Equality Free Variables Satisfaction and Entailment

(日)

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- Iet ·^M be defined such that s₁ ·^M s₂ is the concatenation of the strings s₁ and s₂; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Models Equality Free Variables Satisfaction and Entailment

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- Iet ·^M be defined such that s₁ ·^M s₂ is the concatenation of the strings s₁ and s₂; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

- 10001
- ο ε
- 1010 ·^M 1100

Models Equality Free Variables Satisfaction and Entailment

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

• 10001

- Ο ε
- $1010 \cdot \mathcal{M} \ 1100 = 10101100$

Models Equality Free Variables Satisfaction and Entailment

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E 990

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

- 10001
- Ο ε
- $1010 \cdot \mathcal{M} \ 1100 = 10101100$
- 000 $\cdot^{\mathcal{M}} \epsilon$

Models Equality Free Variables Satisfaction and Entailment

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

E 990

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Some Elements of A

- 10001
- ο ε
- $1010 \cdot \mathcal{M} \ 1100 = 10101100$
- 000 $\cdot^{\mathcal{M}} \epsilon = 000$

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Equality Revisited

Interpretation of equality

Usually, we require that the equality $\mbox{predicate} = \mbox{is interpreted}$ as same-ness.

Models Equality Free Variables Satisfaction and Entailment

・ロト ・雪 ・ ・ ヨ ・

Equality Revisited

Interpretation of equality

Usually, we require that the equality $\mbox{predicate} = \mbox{is interpreted}$ as same-ness.

Extensionality restriction

This means that allowable models are restricted to those in which $a = {}^{\mathcal{M}} b$ holds if and only if *a* and *b* are the same elements of the model's universe.

Models Equality Free Variables Satisfaction and Entailment

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- 3 let $\cdot^{\mathcal{M}}$ be defined such that $s_1 \cdot^{\mathcal{M}} s_2$ is the concatenation of the strings s_1 and s_2 ; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Models Equality Free Variables Satisfaction and Entailment

Example (continued)

- Let A be the set of binary strings over the alphabet {0, 1};
- 2 let $e^{\mathcal{M}} = \epsilon$, the empty string;
- It ·^M be defined such that s₁ ·^M s₂ is the concatenation of the strings s₁ and s₂; and
- let $\leq^{\mathcal{M}}$ be defined such that $s_1 \leq^{\mathcal{M}} s_2$ iff s_1 is a prefix of s_2 .

Equality in \mathcal{M}

- 000 $=^{\mathcal{M}}$ 000
- 001 $\neq^{\mathcal{M}}$ 100

Models Equality Free Variables Satisfaction and Entailment

臣

Another Example

Let
$$\mathcal{F} = \{z, s\}$$
 and $\mathcal{P} = \{\leq\}$.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Models Equality Free Variables Satisfaction and Entailment

크

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

Let A be the set of natural numbers;

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

Let A be the set of natural numbers;

2 let
$$z^{\mathcal{M}} = 0$$
;

Models Equality Free Variables Satisfaction and Entailment

3

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

Let A be the set of natural numbers;

2 let
$$z^{\mathcal{M}} = 0;$$

It s^M be defined such that s(n) = n + 1; and

Models Equality Free Variables Satisfaction and Entailment

(日)

Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

Let A be the set of natural numbers;

2 let
$$z^{\mathcal{M}} = 0$$
;

- let $s^{\mathcal{M}}$ be defined such that s(n) = n + 1; and
- let $\leq^{\mathcal{M}}$ be defined such that $n_1 \leq^{\mathcal{M}} n_2$ iff the natural number n_1 is less than or equal to n_2 .

Models Equality Free Variables Satisfaction and Entailment

How To Handle Free Variables?

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

 $I: \mathcal{V} \to A.$

Models Equality Free Variables Satisfaction and Entailment

・ロト ・四ト ・ヨト ・ヨト

How To Handle Free Variables?

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

 $I: \mathcal{V} \rightarrow A.$

Environment extension

We define environment extension such that $I[x \mapsto a]$ is the environment that maps x to a and any other variable y to I(y).

Models Equality Free Variables Satisfaction and Entailment

臣

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

Models Equality Free Variables Satisfaction and Entailment

(日)

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

in case φ is of the form P(t₁, t₂,..., t_n), if a₁, a₂,..., a_n are the results of evaluating t₁, t₂,..., t_n with respect to *I*, and if P^M(a₁, a₂,..., a_n) = T;

Models Equality Free Variables Satisfaction and Entailment

(日)

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

in case φ is of the form P(t₁, t₂,..., t_n), if a₁, a₂,..., a_n are the results of evaluating t₁, t₂,..., t_n with respect to *I*, and if P^M(a₁, a₂,..., a_n) = T;

• in case ϕ is of the form *P*, if $P^{\mathcal{M}} = T$;

Models Equality Free Variables Satisfaction and Entailment

(日)

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

- in case φ is of the form P(t₁, t₂,..., t_n), if a₁, a₂,..., a_n are the results of evaluating t₁, t₂,..., t_n with respect to *I*, and if P^M(a₁, a₂,..., a_n) = T;
- in case ϕ is of the form *P*, if $P^{\mathcal{M}} = T$;
- in case φ has the form ∀xψ, if the M ⊨_{I[x→a]} ψ holds for all a ∈ A;
Models Equality Free Variables Satisfaction and Entailment

Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment *I*, written $\mathcal{M} \models_I \phi$:

- in case φ is of the form P(t₁, t₂,..., t_n), if a₁, a₂,..., a_n are the results of evaluating t₁, t₂,..., t_n with respect to *I*, and if P^M(a₁, a₂,..., a_n) = T;
- in case ϕ is of the form *P*, if $P^{\mathcal{M}} = T$;
- in case φ has the form ∀xψ, if the M ⊨_{I[x→a]} ψ holds for all a ∈ A;
- in case φ has the form ∃xψ, if the M ⊨_{I[x→a]} ψ holds for some a ∈ A;

Models Equality Free Variables Satisfaction and Entailment

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

臣

Satisfaction Relation (continued)

• in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;

Models Equality Free Variables Satisfaction and Entailment

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \lor \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;

Models Equality Free Variables Satisfaction and Entailment

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \lor \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and

Models Equality Free Variables Satisfaction and Entailment

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Satisfaction Relation (continued)

- in case ϕ has the form $\neg \psi$, if $\mathcal{M} \models_I \psi$ does not hold;
- in case ϕ has the form $\psi_1 \lor \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds or $\mathcal{M} \models_I \psi_2$ holds;
- in case ϕ has the form $\psi_1 \wedge \psi_2$, if $\mathcal{M} \models_I \psi_1$ holds and $\mathcal{M} \models_I \psi_2$ holds; and
- in case φ has the form ψ₁ → ψ₂, if M ⊨_I ψ₂ holds whenever M ⊨_I ψ₁ holds.

Models Equality Free Variables Satisfaction and Entailment

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

Satisfaction of Closed Formulas

If a formula ϕ has no free variables, we call ϕ a *sentence*.

CS 3234: Logic and Formal Systems 04b—Predicate Logic

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 回・

3

Satisfaction of Closed Formulas

If a formula ϕ has no free variables, we call ϕ a *sentence*. $\mathcal{M} \models_I \phi$ holds or does not hold regardless of the choice of *I*. Thus we write $\mathcal{M} \models \phi$ or $\mathcal{M} \not\models \phi$.

Models Equality Free Variables Satisfaction and Entailment

크

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 回・

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

 $\Gamma \models \psi$ iff for all models \mathcal{M} and environments *I*, whenever $\mathcal{M} \models_I \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_I \psi$.

Models Equality Free Variables Satisfaction and Entailment

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

 $\Gamma \models \psi$ iff for all models \mathcal{M} and environments *I*, whenever $\mathcal{M} \models_I \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_I \psi$.

Satisfiability of Formulas

 ψ is satisfiable iff there is some model \mathcal{M} and some environment *I* such that $\mathcal{M} \models_I \psi$ holds.

Models Equality Free Variables Satisfaction and Entailment

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

 $\Gamma \models \psi$ iff for all models \mathcal{M} and environments *I*, whenever $\mathcal{M} \models_I \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_I \psi$.

Satisfiability of Formulas

 ψ is satisfiable iff there is some model \mathcal{M} and some environment *I* such that $\mathcal{M} \models_I \psi$ holds.

Satisfiability of Formula Sets

Γ is satisfiable iff there is some model \mathcal{M} and some environment *I* such that $\mathcal{M} \models_I \phi$, for all $\phi \in \Gamma$.

Models Equality Free Variables Satisfaction and Entailment

・ロト ・四ト ・ヨト ・ヨト

크

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Validity ψ is valid iff for all models \mathcal{M} and environments *I*, we have $\mathcal{M} \models_I \psi$.

Models Equality Free Variables Satisfaction and Entailment

크

The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \dots, \phi_n \models \psi$ requires that in *all* models that satisfy $\phi_1, \phi_2, \dots, \phi_n$, the sentence ψ is satisfied.

Models Equality Free Variables Satisfaction and Entailment

・ロ・ ・ 四・ ・ 回・ ・ 日・

The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \dots, \phi_n \models \psi$ requires that in *all* models that satisfy $\phi_1, \phi_2, \dots, \phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Models Equality Free Variables Satisfaction and Entailment

・ロ・・ (日・・ (日・・ 日・)

The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \dots, \phi_n \models \psi$ requires that in *all* models that satisfy $\phi_1, \phi_2, \dots, \phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?

Models Equality Free Variables Satisfaction and Entailment

・ロ・・ (日・・ (日・・ 日・)

Admin

- Coq Homework 2: out on module homepage; due 10/9, 9:30pm
- Assignment 3: out soon; due 9/9, 11:00am
- Monday, Wednesday: Office hours
- Tuesday: Tutorials (Assignments 2 and 3)
- Wednesday: Labs (Quiz 1 solution, Coq Homework 2)
- Thursday: Lecture on