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Predicates

Example
Every student is younger than some instructor.

S(andy) could denote that Andy is a student.
I(paul) could denote that Paul is an instructor.
Y (andy,paul) could denote that Andy is younger than Paul.
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Example

English
Every girl is younger than her mother.

Predicates
G(x): x is a girl

M(x , y): x is y ’s mother
Y (x , y): x is younger than y

The sentence in predicate logic

∀x∀y(G(x) ∧M(y , x)→ Y (x , y))
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A “Mother” Function

The sentence in predicate logic

∀x∀y(G(x) ∧M(y , x)→ Y (x , y))

The sentence using a function

∀x(G(x)→ Y (x ,m(x)))
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Predicate Vocabulary

At any point in time, we want to describe the features of a
particular “world”, using predicates, functions, and constants.
Thus, we introduce for this world:

a set of predicate symbols P
a set of function symbols F
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Arity of Functions and Predicates

Every function symbol in F and predicate symbol in P comes
with a fixed arity, denoting the number of arguments the symbol
can take.

Special case: Nullary Functions
Function symbols with arity 0 are called constants.

Special case: Nullary Predicates
Predicate symbols with arity 0 denotes predicates that do not
depend on any arguments. They correspond to propositional
atoms.
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Terms

t ::= x | c | f (t , . . . , t)

where
x ranges over a given set of variables V,
c ranges over nullary function symbols in F , and
f ranges over function symbols in F with arity n > 0.
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Examples of Terms

If n is nullary, f is unary, and g is binary, then examples of
terms are:

g(f (n),n)

f (g(n, f (n)))
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Formulas

φ ::= P(t , . . . , t) | (¬φ) | (φ ∧ φ) | (φ ∨ φ) |
(φ→ φ) | (∀xφ) | (∃xφ)

where
P ∈ P is a predicate symbol of arity n ≥ 0,
t are terms over F and V, and
x are variables in V.
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Equality as Predicate

Equality is a common predicate, usually used in infix notation.

=∈ P

Example
Instead of the formula

= (f (x),g(x))

we usually write the formula

f (x) = g(x)
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Models

Definition
Let F contain function symbols and P contain predicate
symbols. A modelM for (F ,P) consists of:

1 A non-empty set A, the universe;
2 for each nullary function symbol f ∈ F a concrete element

fM ∈ A;
3 for each f ∈ F with arity n > 0, a concrete function

fM : An → A;
4 for each P ∈ P with arity n > 0, a function

PM : Un → {F ,T}.
5 for each P ∈ P with arity n = 0, a value from {F ,T}.
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Equality Revisited

Interpretation of equality
Usually, we require that the equality predicate = is interpreted
as same-ness.

Extensionality restriction
This means that allowable models are restricted to those in
which a =M b holds if and only if a and b are the same
elements of the model’s universe.
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Satisfaction Relation

The modelM satisfies φ with respect to environment l , written
M |=l φ:

in case φ is of the form P(t1, t2, . . . , tn), if a1,a2, . . . ,an are
the results of evaluating t1, t2, . . . , tn with respect to l , and if
PM(a1,a2, . . . ,an) = T ;
in case φ is of the form P, if PM = T ;
in case φ has the form ∀xψ, if theM |=l[x 7→a] ψ holds for all
a ∈ A;
in case φ has the form ∃xψ, if theM |=l[x 7→a] ψ holds for
some a ∈ A;
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Satisfaction Relation (continued)

in case φ has the form ¬ψ, ifM |=l ψ does not hold;
in case φ has the form ψ1 ∨ ψ2, ifM |=l ψ1 holds or
M |=l ψ2 holds;
in case φ has the form ψ1 ∧ ψ2, ifM |=l ψ1 holds and
M |=l ψ2 holds; and
in case φ has the form ψ1 → ψ2, ifM |=l ψ1 holds
wheneverM |=l ψ2 holds.

CS 3234: Logic and Formal Systems 05—Predicate Logic II



Review: Syntax and Semantics
Proof Theory

Equivalences and Properties

Predicates, Functions, Terms, Formulas
Models
Satisfaction and Entailment

Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and
ψ a formula.

Entailment
Γ |= ψ iff for all modelsM and environments l , whenever
M |=l φ holds for all φ ∈ Γ, thenM |=l ψ.

Satisfiability of Formulas
ψ is satisfiable iff there is some modelM and some
environment l such thatM |=l ψ holds.

Satisfiability of Formula Sets
Γ is satisfiable iff there is some modelM and some
environment l such thatM |=l φ, for all φ ∈ Γ.
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Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and
ψ a formula.

Validity
ψ is valid iff for all modelsM and environments l , we have
M |=l ψ.
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The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: φ1, φ2, . . . , φn |= ψ
requires that in all models that satisfy φ1, φ2, . . . , φn, the
sentence ψ is satisfied.

How to effectively argue about all possible models?
Usually the number of models is infinite; it is very hard to argue
on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?
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Natural Deduction for Predicate Logic

Relationship between propositional and predicate logic
If we consider propositions as nullary predicates, propositional
logic is a sub-language of predicate logic.

Inheriting natural deduction
We can translate the rules for natural deduction in propositional
logic directly to predicate logic.

Example

φ ψ

φ ∧ ψ
[∧i]
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Built-in Rules for Equality

t = t
[= i]

ti = t2 [x ⇒ t1]φ

[x ⇒ t2]φ

[= e]
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Properties of Equality

We show:
f (x) = g(x) ` h(g(x)) = h(f (x))

using

t = t
[= i]

t1 = t2 [x ⇒ t1]φ

[x ⇒ t2]φ

[= e]

1 f (x) = g(x) premise
2 h(f (x)) = h(f (x)) = i
3 h(g(x)) = h(f (x)) = e 1,2
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Elimination of Universal Quantification

∀xφ

[x ⇒ t ]φ
[∀x e]

Once you have proven ∀xφ, you can replace x by any term t
in φ, provided that t is free for x in φ.
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Example

∀xφ

[x ⇒ t ]φ
[∀x e]

We prove: S(g(john)), ∀x(S(x)→ ¬L(x)) ` ¬L(g(john))

1 S(g(john)) premise
2 ∀x(S(x)→ ¬L(x)) premise
3 S(g(john))→ ¬L(g(john)) ∀x e 2
4 ¬L(g(john)) → e 3,1
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Introduction of Universal Quantification

�
�

�
�

...
[x ⇒ x0]φ

x0

∀xφ
[∀x i]

If we manage to establish a formula φ about a fresh variable x0,
we can assume ∀xφ.
The variable x0 must be fresh; we cannot introduce the same
variable twice in nested boxes.
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Example

∀x(P(x)→ Q(x)), ∀xP(x) ` ∀xQ(x) via

�
�

�
�

...
[x ⇒ x0]φ

x0

∀xφ

1 ∀x(P(x)→ Q(x)) premise
2 ∀xP(x) premise

3 P(x0)→ Q(x0) ∀x e 1 x0
4 P(x0) ∀x e 2
5 Q(x0) → e 3,4

6 ∀xQ(x) ∀x i 3–5
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Introduction of Existential Quantification

[x ⇒ t ]φ

∃xφ
[∃x i]

In order to prove ∃xφ, it suffices to find a term t as “witness”,
provided that t is free for x in φ.

CS 3234: Logic and Formal Systems 05—Predicate Logic II



Review: Syntax and Semantics
Proof Theory

Equivalences and Properties

Equality
Universal Quantification
Existential Quantification

Example

∀xφ ` ∃xφ

Recall: Definition of Models
A modelM for (F ,P) consists of:

1 A non-empty set U, the universe;
2 ...

Remark
Compare this with Traditional Logic (Coq Quiz 1).

Because U must not be empty, we should be able to prove the
sequent above.
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Example (continued)

∀xφ ` ∃xφ

1 ∀xφ premise
2 [x ⇒ x ]φ ∀x e 1
3 ∃xφ ∃x i 2
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Elimination of Existential Quantification

∃xφ

�

�

�

�
[x ⇒ x0]φ

...
χ

x0

[x⇒x0]φ

χ
[∃e]

Making use of ∃
If we know ∃xφ, we know that there exist at least one object x
for which φ holds. We call that element x0, and assume
[x ⇒ x0]φ. Without assumptions on x0, we prove χ (x0 not in χ).
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Example

∀x(P(x)→ Q(x)),∃xP(x) ` ∃xQ(x)

1 ∀x(P(x)→ Q(x)) premise
2 ∃xP(x) premise

3 P(x0) assumption x0
4 P(x0)→ Q(x0) ∀x e 1
5 Q(x0) → e 4,3
6 ∃xQ(x) ∃x i 5

7 ∃xQ(x) ∃x e 2,3–6
Note that ∃xQ(x) within the box does not contain x0, and
therefore can be “exported” from the box.
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Another Example

1 ∀x(Q(x)→ R(x)) premise
2 ∃x(P(x) ∧Q(x)) premise

3 P(x0) ∧Q(x0) assumption x0
4 Q(x0)→ R(x0) ∀x e 1
5 Q(x0) ∧e2 3
6 R(x0) → e 4,5
7 P(x0) ∧e1 3
8 P(x0) ∧ R(x0) ∧i 7, 6
9 ∃x(P(x) ∧ R(x) ∃x i 8

10 ∃x(P(x) ∧ R(x)) ∃x e 2,3–9
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Variables must be fresh! This is not a proof!

1 ∃xP(x) premise
2 ∀x(P(x)→ Q(x)) premise

3 x0

4 P(x0) assumption x0
5 P(x0)→ Q(x0) ∀x e 2
6 Q(x0) → e 5,4

7 Q(x0) ∃x e 1, 4–6

8 ∀yQ(y) ∀y i 3–7
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Equivalences

Two-way-provable
We write φ a` ψ iff φ ` ψ and also ψ ` φ.

Some simple equivalences

¬∀xφ a` ∃x¬φ
¬∃xφ a` ∀x¬φ
∀x∀yφ a` ∀y∀xφ
∃x∃yφ a` ∃y∃xφ

∀xφ ∧ ∀xψ a` ∀x(φ ∧ ψ)

∃xφ ∨ ∃xψ a` ∃x(φ ∨ ψ)
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¬∀xφ ` ∃x¬φ

1 ¬∀xφ premise

2 ¬∃x¬φ assumption

3 x0

4 ¬[x ⇒ x0]φ assumption
5 ∃x¬φ ∃x i 4
6 ⊥ ¬e 5, 2

7 [x ⇒ x0]φ PBC 4–6

8 ∀xφ ∀x i 3–7
9 ⊥ ¬e 8, 1

10 ∃x¬φ PBC 2–9
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∃x∃yφ ` ∃y∃xφ

Assume that x and y are different variables.

1 ∃x∃yφ premise

2 [x ⇒ x0](∃yφ) assumption x0
3 ∃y([x ⇒ x0]φ def of subst (x , y different)

4 [y ⇒ y0][x ⇒ x0]φ assumption y0
5 [x ⇒ x0][y ⇒ y0]φ def of subst (x , y , x0, y0 different)
6 ∃x [y → y0]φ ∃x i 5
7 ∃y∃xφ ∃y i 6

8 ∃y∃xφ ∃y e 3, 4–7

9 ∃y∃xφ ∃x e 1, 2–8
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More Equivalences

Assume that x is not free in ψ

∀xφ ∧ ψ a` ∀x(φ ∧ ψ)

∀xφ ∨ ψ a` ∀x(φ ∨ ψ)

∃xφ ∧ ψ a` ∃x(φ ∧ ψ)

∃xφ ∨ ψ a` ∃x(φ ∨ ψ)
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Central Result of Natural Deduction

φ1, . . . , φn |= ψ

iff

φ1, . . . , φn ` ψ

proven by Kurt Gödel, in 1929 in his doctoral dissertation
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Recall: Decidability

Decision problems
A decision problem is a question in some formal system with a
yes-or-no answer.

Decidability
Decision problems for which there is an algorithm that returns
“yes” whenever the answer to the problem is “yes”, and that
returns “no” whenever the answer to the problem is “no”, are
called decidable.

Decidability of satisfiability
The question, whether a given propositional formula is
satisifiable, is decidable.
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Undecidability of Predicate Logic

Theorem
The decision problem of validity in predicate logic is
undecidable: no program exists which, given any language in
predicate logic and any formula φ in that language, decides
whether |= φ.

Proof sketch
Establish that the Post Correspondence Problem (PCP) is
undecidable
Translate an arbitrary PCP, say C, to a formula φ.
Establish that |= φ holds if and only if C has a solution.
Conclude that validity of predicate logic formulas is
undecidable.
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Compactness

Theorem
Let Γ be a (possibly infinite) set of sentences of predicate logic.
If all finite subsets of Γ are satisfiable, the Γ itself is satisfiable.
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Application of Compactness

Theorem (Löwenheim-Skolem Theorem)
Let ψ be a sentence of predicate logic such that for any natural
number n ≥ 1 there is a model of ψ with at least n elements.
Then ψ has a model with infinitely many elements.
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Next Week

Induction (formal)
Midterm test
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