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e Core Programming Language
e Hoare Triples; Partial and Total Correctness

e Proof Calculus for Partial Correctness
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Program Verification

Specification Documenting and formalizing how a program
should behave
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Program Verification

Specification Documenting and formalizing how a program
should behave

Proof Demonstrating that a program behaves as
specified
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Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation
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Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

Reuse. Clear specification provides basis for reuse

Certification. Verification is required in safety-critical domains
such as nuclear power stations and aircraft
cockpits
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Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.
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Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.
Prove that P satisfies ¢r.

Each step provides risks and opportunities.
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Core Programming Language

e Core Programming Language

ic and Formal Systems



Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs
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Core Programming Language

Motivation of Core Language

@ Real-world languages are quite large; many features and
constructs

@ Verification framework would exceed time we have in
CS3234

@ Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

@ |dea: use subset of Pascal/C/C++/Java
@ Benefit: we can study useful “realistic” examples
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Core Programming Language

Expressions in Core Language

Expressions come as arithmetic expressions E:

E:=z|x|(E+E)|(E—-E)]|(E=*E)
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Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=z|x|(E+E)|(E—-E)]|(E=*E)
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Core Programming Language

Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=z|x|(E+E)|(E—-E)]|(E=*E)
and boolean expressions B:
B:=(E <=E)|[('B)|(B]B)

What about other kinds of boolean expressions (e.g.,
conjunction)?
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Core Programming Language

Commands in Language

Commands cover some common programming idioms.
Expressions are components of commands.

Cu=skip|x=E|C;C|if (B){C}else{C} |while(B){C}
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Core Programming Language

Example

Consider the factorial function:

o ¥ 1

n+1) ¥ (n+1)n!

We shall show that after the execution of the following program,
we havey = x!.

y = 1

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }
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Hoare Triples; Partial and Total Correctness

e Hoare Triples; Partial and Total Correctness
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Hoare Triples; Partial and Total Correctness

Example

while (z !'= x) { z =

z+ 1, y=yxz;}
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Hoare Triples; Partial and Total Correctness

Example

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ We need to be able to say that at the end, y is x!
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Hoare Triples; Partial and Total Correctness

Example

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ We need to be able to say that at the end, y is x!
@ That means we require a post-condition y = x!
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Hoare Triples; Partial and Total Correctness

Example

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
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Hoare Triples; Partial and Total Correctness

Example

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0
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Hoare Triples; Partial and Total Correctness

Example

y' =1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

@ Do we have to prove the postcondition in one go?
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Hoare Triples; Partial and Total Correctness

Example

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

@ Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

@ Do we have to prove the postcondition in one go?
No, the postcondition of one line can be the
pre-condition of the next!
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Hoare Triples; Partial and Total Correctness

Assertions on Programs

Shape of assertions

{9} P {4}
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Hoare Triples; Partial and Total Correctness

Assertions on Programs

{0} P {v}

Informal meaning

If the program P is run in a state that satisfies ¢, then the state
resulting from P’s execution will satisfy .

\
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Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x, the program P calculates a number
y whose square is less than x.
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Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x, the program P calculates a number
y whose square is less than x.

| \

Assertion

{X>0}P{y -y <x}

\
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Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x, the program P calculates a number
y whose square is less than x.

Assertion

| \

{X>0}P{y -y <x}

\

Example for P
y =0
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Hoare Triples; Partial and Total Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x, the program P calculates a number
y whose square is less than x.

Assertion

| \

{X>0}P{y -y <x}

\

Example for P

Our first Hoare triple

{x >0}y = 0{y-y<x}
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Hoare Triples; Partial and Total Correctness

(Slightly Less Trivial) Example

Same assertion
{x>0}P{y -y <x}

Another example for P

y = 0;

while (y = y < x) {
y =y + 1

}

y =y -1

\
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Hoare Triples; Partial and Total Correctness

Hoare Triples

An assertion of the form {¢} P {v} is called a Hoare triple.

@ ¢ is called the precondition, ¢ is called the postcondition.

@ A state of a Core program P is a function p that assigns
each variable x in P to an integer I(x).

@ A state p satisfies ¢ if p IF p—that is, we have a modal logic
where the truth of ¢ depends on the current state.
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Hoare Triples; Partial and Total Correctness

Example

Let p(x) = =2, p(y) =5 and p(z) = —1. We have:
@ plF=(x+y <2z)
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Hoare Triples; Partial and Total Correctness

Partial Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies v, provided that P terminates.
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Hoare Triples; Partial and Total Correctness

Partial Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies v, provided that P terminates.

We write |=pa {¢} P {9}.
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Hoare Triples; Partial and Total Correctness

Extreme Example

{¢} while true { x =0; } {¢}
holds for all ¢ and .
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Hoare Triples; Partial and Total Correctness

Total Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under total
correctness if, for all states which satisfy ¢, P is guaranteed to
terminate and the resulting state satisfies .

We write =i {0} P {1}. j
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Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y = 1

z = 0;

while (z '= x) {z=2z+ 1,y =y x z; }
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Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1;:

y = 1;
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

® ot {Xx >0} Facl {y =x!}
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Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y = 1;

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }

@ =it {x >0} Facl {y =x!}
@ [~ {T} Facl {y =x!}
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Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

N <

w

= 1;

= 0;

hile (z!'=x) {z=z+ 1,y =y % z; }
® ot {Xx >0} Facl {y =x!}

@ (e {T} Facl {y =x!}

® =pa {Xx >0} Facl {y =x!}
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Hoare Triples; Partial and Total Correctness

Back to Factorial

Consider Fac1:

y = 1

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }

® ot {Xx >0} Facl {y =x!}
@ Aot {T} Facl {y =x!}
® px {x >0} Facl {y =x!}
@ Epa {T} Facl {y =x!}
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Proof Calculus for Partial Correctness

e Proof Calculus for Partial Correctness
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Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar {0} P {9}
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Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar {0} P {4}
where
@ =pa {#} P {¢} holds whenever g {¢} P {9}
(correctness)
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Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar {0} P {9}

where

@ =pa {0} P {¢} holds whenever Fp5 {0} P {9}
(correctness), and

® Fpar {#} P {¢} holds whenever =p {¢} P {1}

(completeness).
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Proof Calculus for Partial Correctness

Rules for Partial Correctness

{oyCi{nt  {n}Co{v}

[Composition]

{¢} C1; Co {9}
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Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

[Assignment]

{x = Elgr x =E {¢}
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Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

{¢AB}Ci{}  {pA-B}Cy{¢}

[If-statement]
{p} it B{Ci} else {Cp} {4}

CS 3234: Logic and Formal Systems 10—Program Verification



Proof Calculus for Partial Correctness
Rules for Partial Correctness (continued)

{¢AB}Ci{}  {pA-B}Cy{¢}

[If-statement]
{p} it B{Ci} else {Cp} {4}

{v AB}C {y}
[Partial-while]

{y} whileB{C} {¢) A—B}
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Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

Far ¢ = ¢ {¢} C {¢} Far ¢ = ¢/

[Conseguence]
{¢'} C {4}
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Proof Calculus for Partial Correctness

Proof Tableaux

Proofs have tree shape

All rules have the structure

something

something else

As a result, all proofs can be written as a tree.

Practical concern

These trees tend to be very wide when written out on paper.
Thus we are using a linear format, called proof tableaux.
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Proof Calculus for Partial Correctness

Interleave Formulas with Code

{¢} C1 {n} {n} Cz {¥}

[Composition]

{0} C1;Co {¥}

Shape of rule suggests format for proof of Cy; Cy;...;Cp:
{0}
Cu;
{¢1} justification

Cy;

{¢n_1} justification
Cn?
{¢n} justification
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Proof Calculus for Partial Correctness

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition v holds.
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Proof Calculus for Partial Correctness

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition v holds.

Common situation
If P has the shape Cy;...; C,, we need to find the weakest
formula v’ such that

{¢'} Cn {¥}
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Proof Calculus for Partial Correctness

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition v holds.

Common situation

If P has the shape Cy;...; C,, we need to find the weakest
formula v’ such that

{¢'} Cn {¥}

Terminology
The weakest formula v/’ is called weakest precondition.
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Proof Calculus for Partial Correctness

Example

{y <3}

{y +1<4} Implied
y=y+1

{y < 4} Assignment
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Proof Calculus for Partial Correctness

Another Example

Canweclamu=x+yafterz=x; z=z+y;, u=2;?
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Proof Calculus for Partial Correctness

Another Example

Canweclamu=x+yafterz=x; z=z+y;, u=2;?

{T}

{X+y=x+y} Implied

z =Xx;

{z+y =x+y} Assignment
z=2z+y;

{z=x+y} Assignment
u=z;

{u=x+y} Assignment
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Proof Calculus for Partial Correctness

An Alternative Rule for If

We have:

{pAB}Ci{y}  {6A-B}Ca{y}
[If-statement]

{oyif B{Cy} else {Cs} {4}

Sometimes, the following derived rule is more suitable:

{1} Co{v}  {¢2} Co {9}

[If-stmt 2]
{(B—=¢1)AN(-B—¢2)}if B{Cy1} else {Cy}{¢}
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Proof Calculus for Partial Correctness

Example

Consider this implementation of Succ:

a=x+ 1;

if (a =1==0) {
y = 1

} else {

y = a;

}

Can we prove {T} Succ {y =x +1}?
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Proof Calculus for Partial Correctness

Another Example

if (a—1==0) {

{1=x+1} If-Statement 2
y=1
{y =x+1} Assignment
} else {
{a=x+1} If-Statement 2
y=a
{y =x+1} Assignment
}
{y =x+1} If-Statement 2
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Proof Calculus for Partial Correctness

Another Example

{T}
{(X+1-1=0—1=x+1)A
((x+1-1=0)—>x+1=x+1)} Implied

a=x+1,;
{@a—1=0—=1=x+1)A
(-(a—1=0)—a=x+1)} Assignment
if (a—1==0){
{1=x+1} If-Statement 2
y =1,
{y =x+1} Assignment
} else {
{a=x+1} If-Statement 2
y=a;
{y =x+1} Assignment
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Proof Calculus for Partial Correctness

Recall: Partial-while Rule

{¢ AB} C {4}

[Partial-while]
{v}whileB {C}{yA-B}
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Proof Calculus for Partial Correctness

Factorial Example

We shall show that the following Core program Fac1l meets this

specification:
y = 1
z = 0;

while (z '= x) {z=z+ 1,y =y x z; }
Thus, to show:
{T} Facl{y =x!}
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Proof Calculus for Partial Correctness

Partial Correctness of Facl

fy =21}

while (z = x) {
{y =zlAnz #x} Invariant
{y-(z+1)=(z+1)!} Implied
z=z+1;
{y-z=2z!} Assignment
y=Yyx*z
{y =z} Assignment
}
{y=2IA=(z #x)} Partial-while
{y =x!} Implied
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Proof Calculus for Partial Correctness

Partial Correctness of Facl

{T}

{(L =00} Implied
y=1

{y =0} Assignment
z=0;

{y =z} Assignment

while (z = x) {

.

{y =z A—(z #x)} Partial-while
{y =x!} Implied
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Proof Calculus for Partial Correctness

Next Week

@ Lecture 11: Total Correctness; Semantics of Hoare Logic
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