
Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

11—Program Verification (Part II)

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

October 28, 2010

Generated on Thursday 28th October, 2010, 11:44

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

1 Review: Partial Correctness

2 Proof Calculus for Total Correctness

3 Programming by Contract

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

Prove that P satisfies φR .

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

Prove that P satisfies φR .

Each step provides risks and opportunities.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

and boolean expressions B:

B ::= true | false | (!B) | (B&B) | (B‖B) | (E < E)

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Commands in Core Language

Commands cover some common programming idioms.
Expressions are components of commands.

C ::= x = E | C;C | if B {C} else {C} | while B {C}

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Example

Consider the factorial function:

0! def
= 1

(n + 1)! def
= (n + 1) · n!

We shall show that after the execution of the following Core
program, we have y = x!.

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Assertions on Programs

Shape of assertions

{φ} P {ψ}

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Assertions on Programs

Shape of assertions

{φ} P {ψ}

Informal meaning

If the program P is run in a state that satisfies φ, then the state
resulting from P ’s execution will satisfy ψ.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Example

What program P meets this tiple

{x > 0} P {y · y < x}

One correct answer: P =

y = 0 ;
wh i le (y ∗ y < x) {

y = y + 1 ;
}
y = y − 1 ;

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Hoare Triples

Definition

An assertion of the form {φ} P {ψ} is called a Hoare triple.

φ is called the precondition, ψ is called the postcondition.

A state of a Core program P is a function l that assigns
each variable x in P to an integer l(x).

A state l satisfies φ if M |=l φ, where M contains integers
and gives the usual meaning to the arithmetic operations.

Quantifiers in φ and ψ bind only variables that do not occur
in the program P.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Partial Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under partial
correctness if, for all states which satisfy φ, the state resulting
from P ’s execution satisfies ψ, provided that P terminates.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Partial Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under partial
correctness if, for all states which satisfy φ, the state resulting
from P ’s execution satisfies ψ, provided that P terminates.

Notation

We write |=par {φ} P {ψ}.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Total Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under total
correctness if, for all states which satisfy φ, P is guaranteed to
terminate and the resulting state satisfies ψ.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Total Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under total
correctness if, for all states which satisfy φ, P is guaranteed to
terminate and the resulting state satisfies ψ.

Notation

We write |=tot {φ} P {ψ}.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

where

|=par {φ} P {ψ} holds whenever `par {φ} P {ψ}
(correctness)

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

where

|=par {φ} P {ψ} holds whenever `par {φ} P {ψ}
(correctness), and

`par {φ} P {ψ} holds whenever |=par {φ} P {ψ}
(completeness).

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Rules for Partial Correctness

{φ} C1 {η} {η} C2 {ψ}

{φ} C1;C2 {ψ}

[Composition]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Rules for Partial Correctness (continued)

{[x → E]ψ} x = E {ψ}

[Assignment]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Rules for Partial Correctness (continued)

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Rules for Partial Correctness (continued)

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]

{ψ ∧ B} C {ψ}

{ψ} while B { C } {ψ ∧ ¬B}

[Partial-while]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Rules for Partial Correctness (continued)

`AR φ
′ → φ {φ} C {ψ} `AR ψ → ψ′

{φ′} C {ψ′}

[Implied]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Factorial Example

We shall show that the following Core program Fac1 meets this
specification:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

Thus, to show:
{>} Fac1 {y = x!}

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Partial Correctness of Fac1

...
{y = z!}
while (z != x) {

{y = z! ∧ z 6= x} Invariant
{y · (z + 1) = (z + 1)!} Implied
z = z + 1;
{y · z = z!} Assignment
y = y ∗ z;
{y = z!} Assignment

}
{y = z! ∧ ¬(z 6= x)} Partial-while
{y = x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

1 `AR φ→ η

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

1 `AR φ→ η

2 `AR η ∧ ¬B → ψ

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

1 `AR φ→ η

2 `AR η ∧ ¬B → ψ

3 {η ∧ B} C {η}

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Partial Correctness of Fac1

{>}
{(1 = 0!)} Implied
y = 1;
{y = 0!} Assignment
z = 0;
{y = z!} Assignment
while (z != x) {

...
}
{y = z! ∧ ¬(z 6= x)} Partial-while
{y = x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

1 Review: Partial Correctness

2 Proof Calculus for Total Correctness

3 Programming by Contract

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
Why?

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
Why? Well-foundedness of natural numbers

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
Why? Well-foundedness of natural numbers

We shall include this argument in a new version of the
while rule.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Rules for Partial Correctness (continued)

{ψ ∧ B} C {ψ}

{ψ} while B { C } {ψ ∧ ¬B}

[Partial-while]

{ψ ∧ B ∧ 0 ≤ E = E0} C {ψ ∧ 0 ≤ E < E0}

{ψ ∧ 0 ≤ E} while B { C } {ψ ∧ ¬B}

[Total-while]

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Factorial Example (Again!)

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

What could be a good variant E?

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Factorial Example (Again!)

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Factorial Example (Again!)

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

Answer:
x − z

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Total Correctness of Fac1

...
{y = z! ∧ 0 ≤ x − z}
while (z != x) {

{y = z! ∧ z 6= x ∧ 0 ≤ x − z = E0} Invariant
{y · (z + 1) = (z + 1)! ∧ 0 ≤ x − (z + 1) < E0} Implied
z = z + 1;
{y · z = z! ∧ 0 ≤ x − z < E0} Assignment
y = y ∗ z;
{y = z! ∧ 0 ≤ x − z < E0} Assignment

}
{y = z! ∧ ¬(z 6= x)} Total-while
{y = x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Total Correctness of Fac1

{x ≤ 0}
{(1 = 0! ∧ 0 ≤ x − 0} Implied
y = 1;
{y = 0! ∧ 0 ≤ x − 0} Assignment
z = 0;
{y = z! ∧ 0 ≤ x − z} Assignment
while (z != x) {

...
}
{y = z! ∧ ¬(z 6= x)} Total-while
{y = x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

1 Review: Partial Correctness

2 Proof Calculus for Total Correctness

3 Programming by Contract

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Programming by Contract

Consider
{φ} P {ψ}

Obligation for consumer of P

Only run P when φ is met.

Obligation for producer of P

Make sure ψ is met after every run of P, assuming that φ is met
before the run.

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Contracts as Documentation

i n t f a c t o r i a l (x : i n t) { . . . r e t u r n y ; }

Method name: factorial
Input: x of type int
Assumes: 0 ≤ x
Guarantees: y = x!
Output: y
Modifies only: y

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)

	Review: Partial Correctness
	Proof Calculus for Total Correctness
	Programming by Contract

