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Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .
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Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

Prove that P satisfies φR .

Each step provides risks and opportunities.
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Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E)
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Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E)

and boolean expressions B:

B ::= true | false | (!B) | (B&B) | (B‖B) | (E < E)
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Commands in Core Language

Commands cover some common programming idioms.
Expressions are components of commands.

C ::= x = E | C;C | if B {C} else {C} | while B {C}
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Example

Consider the factorial function:

0! def
= 1

(n + 1)! def
= (n + 1) · n!

We shall show that after the execution of the following Core
program, we have y = x!.

y = 1 ;
z = 0 ;
while ( z != x ) { z = z + 1 ; y = y ∗ z ; }

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)



Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

Assertions on Programs

Shape of assertions

{φ} P {ψ}
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Assertions on Programs

Shape of assertions

{φ} P {ψ}

Informal meaning

If the program P is run in a state that satisfies φ, then the state
resulting from P ’s execution will satisfy ψ.
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Example

What program P meets this tiple

{x > 0} P {y · y < x}

One correct answer: P =

y = 0 ;
wh i le ( y ∗ y < x ) {

y = y + 1 ;
}
y = y − 1 ;
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Hoare Triples

Definition

An assertion of the form {φ} P {ψ} is called a Hoare triple.

φ is called the precondition, ψ is called the postcondition.

A state of a Core program P is a function l that assigns
each variable x in P to an integer l(x).

A state l satisfies φ if M |=l φ, where M contains integers
and gives the usual meaning to the arithmetic operations.

Quantifiers in φ and ψ bind only variables that do not occur
in the program P.
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Partial Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under partial
correctness if, for all states which satisfy φ, the state resulting
from P ’s execution satisfies ψ, provided that P terminates.
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Partial Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under partial
correctness if, for all states which satisfy φ, the state resulting
from P ’s execution satisfies ψ, provided that P terminates.

Notation

We write |=par {φ} P {ψ}.
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Total Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under total
correctness if, for all states which satisfy φ, P is guaranteed to
terminate and the resulting state satisfies ψ.
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Total Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under total
correctness if, for all states which satisfy φ, P is guaranteed to
terminate and the resulting state satisfies ψ.

Notation

We write |=tot {φ} P {ψ}.
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Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}
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Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

where

|=par {φ} P {ψ} holds whenever `par {φ} P {ψ}
(correctness)
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Programming by Contract

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

where

|=par {φ} P {ψ} holds whenever `par {φ} P {ψ}
(correctness), and

`par {φ} P {ψ} holds whenever |=par {φ} P {ψ}
(completeness).
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Rules for Partial Correctness

{φ} C1 {η} {η} C2 {ψ}

{φ} C1;C2 {ψ}

[Composition]
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Rules for Partial Correctness (continued)

{[x → E ]ψ} x = E {ψ}

[Assignment]
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Rules for Partial Correctness (continued)

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]
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Rules for Partial Correctness (continued)

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]

{ψ ∧ B} C {ψ}

{ψ} while B { C } {ψ ∧ ¬B}

[Partial-while]
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Rules for Partial Correctness (continued)

`AR φ
′ → φ {φ} C {ψ} `AR ψ → ψ′

{φ′} C {ψ′}

[Implied]
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Factorial Example

We shall show that the following Core program Fac1 meets this
specification:

y = 1 ;
z = 0 ;
while ( z != x ) { z = z + 1 ; y = y ∗ z ; }

Thus, to show:
{>} Fac1 {y = x!}
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Partial Correctness of Fac1

...
{y = z!}
while ( z != x ) {

{y = z! ∧ z 6= x} Invariant
{y · (z + 1) = (z + 1)!} Implied
z = z + 1;
{y · z = z!} Assignment
y = y ∗ z;
{y = z!} Assignment

}
{y = z! ∧ ¬(z 6= x)} Partial-while
{y = x!} Implied
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How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]
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How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}
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How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

1 `AR φ→ η
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How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

1 `AR φ→ η

2 `AR η ∧ ¬B → ψ

CS 3234: Logic and Formal Systems 11—Program Verification (Part II)



Review: Partial Correctness
Proof Calculus for Total Correctness

Programming by Contract

How To Discover an Invariant?

{η ∧ B} C {η}

{η} while B { C } {η ∧ ¬B}

[Partial-while]

To be proven: {φ} while B { C } {ψ}

1 `AR φ→ η

2 `AR η ∧ ¬B → ψ

3 {η ∧ B} C {η}
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Partial Correctness of Fac1

{>}
{(1 = 0!)} Implied
y = 1;
{y = 0!} Assignment
z = 0;
{y = z!} Assignment
while ( z != x ) {

...
}
{y = z! ∧ ¬(z 6= x)} Partial-while
{y = x!} Implied
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Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
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Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
Why?
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Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
Why? Well-foundedness of natural numbers
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Ideas for Total Correctness

The only source of non-termination is the while
command.

If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.
Why? Well-foundedness of natural numbers

We shall include this argument in a new version of the
while rule.
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Rules for Partial Correctness (continued)

{ψ ∧ B} C {ψ}

{ψ} while B { C } {ψ ∧ ¬B}

[Partial-while]

{ψ ∧ B ∧ 0 ≤ E = E0} C {ψ ∧ 0 ≤ E < E0}

{ψ ∧ 0 ≤ E} while B { C } {ψ ∧ ¬B}

[Total-while]
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Factorial Example (Again!)

y = 1 ;
z = 0 ;
while ( z != x ) { z = z + 1 ; y = y ∗ z ; }

What could be a good variant E?
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Factorial Example (Again!)

y = 1 ;
z = 0 ;
while ( z != x ) { z = z + 1 ; y = y ∗ z ; }

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.
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Factorial Example (Again!)

y = 1 ;
z = 0 ;
while ( z != x ) { z = z + 1 ; y = y ∗ z ; }

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

Answer:
x − z
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Total Correctness of Fac1

...
{y = z! ∧ 0 ≤ x − z}
while ( z != x ) {

{y = z! ∧ z 6= x ∧ 0 ≤ x − z = E0} Invariant
{y · (z + 1) = (z + 1)! ∧ 0 ≤ x − (z + 1) < E0} Implied
z = z + 1;
{y · z = z! ∧ 0 ≤ x − z < E0} Assignment
y = y ∗ z;
{y = z! ∧ 0 ≤ x − z < E0} Assignment

}
{y = z! ∧ ¬(z 6= x)} Total-while
{y = x!} Implied
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Total Correctness of Fac1

{x ≤ 0}
{(1 = 0! ∧ 0 ≤ x − 0} Implied
y = 1;
{y = 0! ∧ 0 ≤ x − 0} Assignment
z = 0;
{y = z! ∧ 0 ≤ x − z} Assignment
while ( z != x ) {

...
}
{y = z! ∧ ¬(z 6= x)} Total-while
{y = x!} Implied
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Programming by Contract

Consider
{φ} P {ψ}

Obligation for consumer of P

Only run P when φ is met.

Obligation for producer of P

Make sure ψ is met after every run of P, assuming that φ is met
before the run.
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Contracts as Documentation

i n t f a c t o r i a l ( x : i n t ) { . . . r e t u r n y ; }

Method name: factorial
Input: x of type int
Assumes: 0 ≤ x
Guarantees: y = x!
Output: y
Modifies only: y
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