11—Program Verification (Part II)

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

October 28, 2010

Generated on Thursday 2gth October, 2010, 11:44

CS 3234: Logic and Formal Systems 11—Program Verification (Part I1)

e Review: Partial Correctness
e Proof Calculus for Total Correctness

e Programming by Contract

CS 3234: Logic and Formal Systems 11—Program Verification (Part I1)

Review: Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.
Prove that P satisfies ¢r.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula ¢g.

Write program P that meets ¢g.
Prove that P satisfies ¢r.

Each step provides risks and opportunities.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Expressions in Core Language

Expressions come as arithmetic expressions E:

E:=n|x|(-E)|(E+E)|(E—-E)|(E*E)

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Expressions in Core Language

Expressions come as arithmetic expressions E:
E:=n|x|(-E)|(E+E)|(E—-E)|(E*E)
and boolean expressions B:

B:=true|false|(!B)|(B&B)|(B|B)|(E <E)

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Commands in Core Language

Commands cover some common programming idioms.
Expressions are components of commands.

Cu=x=E|C;C|if B{C}else{C}|whileB {C}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Example

Consider the factorial function:

o ¥ 1

n+1) ¥ (n+1)n!

We shall show that after the execution of the following Core
program, we have y = x!.

y = 1

z = 0;

while (z '= x) {z=z+ 1,y =y x z; }

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Assertions on Programs

Shape of assertions

{9} P {4}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Assertions on Programs

{0} P {v}

Informal meaning

If the program P is run in a state that satisfies ¢, then the state
resulting from P’s execution will satisfy .

\

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Example

What program P meets this tiple

{x>0}P{y -y <x}

One correct answer: P =

y = 0;

while (y = y < x) {
y =y + 1

}

y =y -1

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Hoare Triples

An assertion of the form {¢} P {v'} is called a Hoare triple.
@ ¢ is called the precondition, v is called the postcondition.

@ A state of a Core program P is a function | that assigns
each variable x in P to an integer I(x).

@ A state | satisfies ¢ if M | ¢, where M contains integers
and gives the usual meaning to the arithmetic operations.

@ Quantifiers in ¢ and ¢ bind only variables that do not occur
in the program P.

-

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Partial Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies v, provided that P terminates.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Partial Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under partial
correctness if, for all states which satisfy ¢, the state resulting
from P’s execution satisfies v, provided that P terminates.

We write |=pa {¢} P {9}.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Total Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under total
correctness if, for all states which satisfy ¢, P is guaranteed to
terminate and the resulting state satisfies .

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Total Correctness

Definition

We say that the triple {¢} P {¢} is satisfied under total
correctness if, for all states which satisfy ¢, P is guaranteed to
terminate and the resulting state satisfies .

We write =i {0} P {1}. j

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar {0} P {9}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar {0} P {4}
where
@ =pa {#} P {¢} holds whenever g {¢} P {9}
(correctness)

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

Fpar {0} P {9}

where

@ =pa {0} P {¢} holds whenever Fp5 {0} P {9}
(correctness), and

® Fpar {#} P {¢} holds whenever =p {¢} P {1}

(completeness).

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Rules for Partial Correctness

{oyCi{nt {n}Co{v}

[Composition]

{¢} C1; Co {9}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Rules for Partial Correctness (continued)

[Assignment]

{x = Elgr x =E {¢}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Rules for Partial Correctness (continued)

{¢AB}Ci{} {pA-B}Cy{¢}

[If-statement]
{p} it B{Ci} else {Cp} {4}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Rules for Partial Correctness (continued)

{¢AB}Ci{} {pA-B}Cy{¢}

[If-statement]
{p} it B{Ci} else {Cp} {4}

{v AB}C {y}
[Partial-while]

{y} whileB{C} {¢) A—B}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Rules for Partial Correctness (continued)

Far ¢ — ¢ {6} C {¢} Far Y — 1

[Implied]
{¢'} C {4}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Factorial Example

We shall show that the following Core program Fac1l meets this

specification:
y = 1
z = 0;

while (z '= x) {z=z+ 1,y =y x z; }
Thus, to show:
{T} Facl{y =x!}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Partial Correctness of Facl

fy =21}

while (z = x) {
{y =zlAnz #x} Invariant
{y-(z+1)=(z+1)!} Implied
z=z+1;
{y-z=2z!} Assignment
y=Yyx*z
{y =z} Assignment
}
{y=2IA=(z #x)} Partial-while
{y =x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

How To Discover an Invariant?

{nAB}C {n}
[Partial-while]

{n}whileB{C}{nA-B}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

How To Discover an Invariant?

{nAB}C {n}
[Partial-while]

{n}whileB{C}{nA-B}

To be proven: {¢p}whileB{C} {4}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

How To Discover an Invariant?

{nAB}C {n}
[Partial-while]

{n}whileB{C}{nA-B}

To be proven: {¢} whileB {C} {¢y}
Q Fard— 1

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

How To Discover an Invariant?

{nAB}C {n}
[Partial-while]

{n}whileB{C}{nA-B}

To be proven: {¢p}whileB{C} {4}

Q Faro— 1
Q FarnA-B— 9

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

How To Discover an Invariant?

{nAB}C {n}

[Partial-while]
{n}whileB{C}{nA-B}

To be proven: {¢p}whileB{C} {4}

Q Faro— 1
Q FarA-B =9
Q {nAB}C {n}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Review: Partial Correctness

Partial Correctness of Facl

{T}

{(L =00} Implied
y=1

{y =0} Assignment
z=0;

{y =z} Assignment

while (z = x) {

.

{y =z A—(z #x)} Partial-while
{y =x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

e Proof Calculus for Total Correctness

ic and Formal Systems n Verification (Part I1)

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

Why?

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

Why? Well-foundedness of natural numbers

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Ideas for Total Correctness

@ The only source of non-termination is the whi | e
command.

@ If we can show that the value of an integer expression
decreases in each iteration, but never becomes negative,
we have proven termination.

Why? Well-foundedness of natural numbers

@ We shall include this argument in a new version of the
whi | e rule.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Rules for Partial Correctness (continued)

{¢ AB} C {4}

[Partial-while]
{¢}whileB {C}{yA-B}

{ ABAO<E =Ep}C {ty AO <E < Ep}

[Total-while]
{ NAO<E}whileB{C}{¢A-B}

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Factorial Example (Again!)

y = 1,
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

What could be a good variant E?

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Factorial Example (Again!)

y = 1
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Factorial Example (Again!)

1;
z = 0;
while (z '= x) {z=z+ 1,y =y x z; }

What could be a good variant E?
E must strictly decrease in the loop, but not become negative.

Answer:

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Total Correctness of Facl

-{y:z!/\ng—z}
while (z!=x) {

{y=2'Az#xN0<Xx—-2z=Ep}
{y (z+1)=(@zZ+1)'A0<x—(z+1)<Ep}

z=z+1;
{y - z=2z'A0<x -z <Ep}
y =Yy % Z;
{y=2IN0<x -2z <Ep}

}

{y =21 A=(z #x)}

{y =x!}

Invariant
Implied

Assignment
Assignment

Total-while
Implied

CS 3234: Logic and Formal Systems

11—Program Verification (Part 1)

Proof Calculus for Total Correctness

Total Correctness of Facl

{x <0}

{1=0'A0<x -0} Implied
y=1

{y=0lA0<x -0} Assignment
z=0;

{y=z!'A0<x -z} Assignment
while (z!=x) {

.

{y =z'A—-(z #x)} Total-while
{y =x!} Implied

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Programming by Contract

e Programming by Contract

gic and Formal Systems m Verification (Part 1)

Programming by Contract

Programming by Contract

Consider

{¢} P {4}

Obligation for consumer of P
Only run P when ¢ is met.

Obligation for producer of P

Make sure 1 is met after every run of P, assuming that ¢ is met
before the run.

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

Programming by Contract

Contracts as Documentation

int factorial (x: int) { ... return y; }
Method name: factori al

Input: x of type int

Assumes: 0<x

Guarantees: y = X!

Output: y

Modifies only: vy

CS 3234: Logic and Formal Systems 11—Program Verification (Part 1)

	Review: Partial Correctness
	Proof Calculus for Total Correctness
	Programming by Contract

