ﬁ Chapter 3 E

| ecture 3 - Preliminaries

CS3235 notes. Page number: 123

Q Administrivia E

[J Unfortunately, we have been unable to purchase a SIM
card reader. If you know where to get one, please contact
Hugh...

[1 We hope to start Labl next week, but the room is still not
ready. | will email you when | know...

[ Successful project bids announced on Monday, pick up
equipment at that time.
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ﬁ Motivation: fields E

Finite fields are found over and over again particularly in
cryptography and error detection. Found in:

[1 Diffie-Hellman relies on apparent difficulty of computing
logarithms over GF(q)

[0 ElGamal cryptosystems, elliptic curves
[ Zero-knowledge proof protocols

[0 AES encryption (in GF)
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ﬁ Consider: Stupid system: Z5 E

1 0 1 2 3 4 5 6 7 8 9 10 11
2 0 2 4 6 8 10 12 14 1 3 5 7
3 0 3 6 9 12 0 3 6 9 12 0 3

5 0 5 10 0 5 10 0 5 10 0 5 10

1,2,4 have unique inverse, but the others not.
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ﬁ Consider: Stupid system: 75 E

If our rule was: multiply code symbol by key symbols 4,2,1
decode by dividing (i.e. multiplying by inverse)

0 Then 3,5,9 encodesto 4 x3,2%5,1%x9 = 12,10,9. We
decode with 124,10 % 8,9%x1 = 3,5,9

[0 However, choosing other keys without unique inverses
will cause problems.
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Q Back to operations in GF(p")... E
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ﬁ Why primes? E

In the book “Contact”, the heroine recognizes an alien
communication because it starts...

2..3..5..7..11.. 13.. 17.. 19.. 23...2

2Actually 1,2,3,5... 2)
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ﬁ Why primes? E

Is it just a coincidence that the numbers on the main Real
Madrid player’s jerseys are:

Carlos, No 3; Zidane, No 5; Raul, No 7;: Owen, No 117
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ﬁ Why primes? E

For 2500 years mathematicians studied prime numbers just
because they were interesting, without any idea they would
have practical applications. Possible real-world uses:

1. Sometimes... a prime number of ball bearings arranged
in a bearing, to cut down on periodic wear (also gear
teeth).

2. Possibly... the 13 and 17-year periodic emergence of
cicadas may be due to coevolution with predators (that
lost and became extinct).
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Q Why primes? E

[ We do not know how to guess when the next one will
occur

[0 But ... we do know that the density is predictable...
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Why primes?

The number of primes less than x
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ﬁ Why primes? E

[J Because 2500 years of mathematics has failed to
uncover some basic prime properties, they make a good
candidate for constructing difficult (impossible to decrypt)
translations... and hence our interest in them...

[1 Because primes are beautiful...
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Q Why primes? E

Consider the following problem:

Is it possible to find an arbitrary sized sequence of
numbers that are not primes?

Answer: YESI!

CS3235 notes. Page number: 136




ﬁ Not primes... E

If you want 3 not-primes in a row, calculate 4 x 3 x 2 x 1 = 4!,
and choose the numbers 4! + 2, 4! + 3 and 4! + 4. None can
be a prime.

If you want 42,000 not-primes in a row, calculate 42001 x
% 2% 1 = 42001!, and choose the numbers 42001! + 2,
42001! 4+ 3... None can be a prime.

If you want 4847584765843775375983487509485945495840
not-primes ...
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Q Fermat’s little theorem E

[J In cryptography, one often wants to raise a number to a
power, modulo another number.

[0 For the integers mod p where p is a prime (denoted
Zy), there is a result know as Fermat’s little theorem,
discovered by the 17th century French mathematician
Pierre de Fermat, 1601-1665.
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ﬁ Fermat’s little theorem E

Theorem (Fermat): If p is a prime and a Is any non-
zero number less than p, then

a® Imodp =1

Notation: sometimes use a?P"!modp = 1, and sometimes
a?~1 =1 (modp). Exponentiation in a field.
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Q Fermat’s little theorem, p =11 E
a al a2 a3 a4 a5 a6 a7 a8 a9 alo
2 2| 4| 8| 5|10 9| 7| 3| 6 1
3 31 9| 5| 4| 1| 3| 9| 5| 4 1
4 4| 5 9| 3| 1| 4| 5| 9| 3 1
5 51 3| 4| 9| 1| 5| 3| 4] 9 1
6 6| 3| 7| 9|10 5| 8| 4| 2 1
7 7| 5| 2| 3|10 4| 6| 9| 8 1
8 8| 9| 6| 4|10| 3| 2| 5| 7 1
9 9| 4| 3| 5| 1| 9| 4| 3| 5 1
10{1w| 1|(10| 1|[10] 1]10] 1] 10 1
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ﬁ Fermat’s little theorem E

[ For p = 11 the value is always 1 by the time the power
gets to 10

[J Sometimes the value gets to 1 earlier

[ Lengths of runs are always numbers that divide evenly
into 10

[1 A value of ¢ for which the whole row is needed is called
a generator. 6, 7, and 8 are generators.
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Q An interesting observation.. E

Because a to a power mod p always starts repeating after
the power reaches p — 1, you can do this:

a®*modp = a” mod (p—1) o P.

Thus modulo p in the expression requires modulo p — 1 in
the exponent. For p = 13, then

a2 mod 13 = ¢22M0d 12 1154 13 — 45 mod 13.
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Another example

result = 7% mod 13
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Another example

result=
62247027506732273704655645590797926890623986483292191309020787710924
86991072740587065198907810173838994978267934813009677708927826601313
55777365361484044783800851222817392261341421370762400507026834564501
61478881858016233581815507729190060733863810985820998417753776670372
86814739670120315712396914000184822340352355906455155667534102473964
53541377412583676260706359331048403293779053704648771069764131865422
62299505280557584280574185802694213299802280179325494560628948940739
34448228464915119714116869895958794732024285742690180232449402567101
05083114967356334295809219455711191131246974627173111242792554453321
16504914530077241996189357298508605206780120789880835525222341940514
58556732086842042388893209157040799864871901064991230860288657545878
54838031902109935110264503891544145872580747830622294066978047059698
08888224976779404912792017633095411318555938776800816778624695807909\
49705787192596277127796303487781814106147375370904627195995589087276
8469943 mod 13= 5
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4

How did | work that out?

| used bc

E

An arbitrary precision calculator language
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Another example

result = 7% mod 13

E
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4
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Another example

result = 7% mod 13

_ 7215 mod 12 mod 13
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4
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Another example

result = 72 mod 13
_  ol215 mod 12 mod 13

— 7°mod 13

E
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ﬁ Another example

result = 7% mod 13
_ 7215 mod 12 mod 13

— 7°mod 13
= 343 mod 13

CS3235 notes.

Page number: 149

Q Another example

result = 7% mod 13
_  ol215 mod 12 mod 13
— 7°mod 13
= 343 mod 13
= 5
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ﬁ Summary E

We can do BIG NUMBER maths without calculating BIG
numbers.

CS3235 notes. Page number: 151

4 Culer [

The Swiss mathematician Leonhard Euler (1707-1783)
discovered a generalization of Fermat's Theorem which will
later be useful in the discussion of the RSA cryptosystem.
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ﬁ Euler’s theorem E

Theorem (Euler): If n is any positive integer and a is any
positive integer less than n with no divisors in common with
n, then

a®™ modn = 1,

where ¢(n) is the Euler phi function:

dpn)=n(l—1/p1)...(1 = 1/pm),

and pq, ..., pn, are all the prime numbers that divide evenly
into n, including n itself in case it is a prime.

CS3235 notes. Page number: 153

ﬁ Special case 1 E

[ If n is a prime, then using the formula,

n—1

d(n)=n(l—1/n) =n( )=n-—1

n

Fermat’s result is a special case of Euler’s.

a®™modn =a" modn =1
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ﬁ Special case 2 E

[0 Another special case needed for RSA comes when the
modulus is a product of two primes: n = pq. Then

¢p(n)=n(l-1/p)(1-1/q9)=(p—1)(¢g—1)
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ﬁ Special case 2 E

a(p—l)(q—l) mod pq = 1

[0 assuming a has no divisors in common with pq

[0 and p and ¢ are primes
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ﬁ Euler in action:

n =15 and ¢(n) = 8 E

| a2 | a3 | a4 | a5 | a6 | a7 | aS | a9 | al() | all | a12 | a13 | a14 |
4 8 1 1 1
9 12 6 3 9 12 3 9 12 3 9
1 1 1 1 1 1 1
10 5 10 5 10 5 10 5 10 5 10 5 10
6 6 6 6 6 6 6 6 6 6 6
4 13 1
4 2 1
9 6 9 6 9 6 9 6 9 9 6
10 10 10 10 10 10 10 10 10 10 10 10 10
1 1 1 1 1 1 1
9 3 6 12 9 3 6 12 9 3 6 12 9
4 7 1 1 1
1 1 1 1 1 1 1
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Q Table E

Table illustrates Euler’s theorem forn = 15 = 3 - 5, with

$(15) =15-(1-1/3)-(1-1/5)=(3-1)-(5—1) =8

Notice here that a 1 is reached when the power is 8, but
only for numbers with no divisors in common with 15.

For other base numbers, the value never gets to 1.

CS3235 notes.

Page number: 158




4 e )

Arithmetic in the exponent is taken mod ¢(n), so that, if a
has no divisors in common with n,

a® modn = ¢ MOdé(n) mod .

If n = 15 as above, then ¢(n) = 8, and if neither 3 nor 5
divides evenly into a, then ¢(n) = 8. Thus for example,

a2 mod 15 = ¢28M0d8 1164 15 = ¢* mod 15.
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ﬁ Before we leave Euler... E

We are interested in...

[0 Large prime numbers (p, q)
[0 Their product n = pq

[ The Euler phi function ¢(n) = (p — 1)(¢g — 1)
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