

Motivation: fields

Finite fields are found over and over again particularly in cryptography and error detection. Found in:

- ✓ Diffie-Hellman relies on apparent difficulty of computing logarithms over GF(q)
- ✓ ElGamal cryptosystems, elliptic curves
- ✓ Zero-knowledge proof protocols
- ✓ AES encryption (in GF)

CS3235 notes.

Page number: 125

Consider: Stupid system: Z_{15}

*	0	1	2	3	4	5	6	7	8	9	10	11	
0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	8	9	10	11	
2	0	2	4	6	8	10	12	14	1	3	5	7	
3	0	3	6	9	12	0	3	6	9	12	0	3	
4	0	4	8	12	1	5	9	13	2	6	10	14	
5	0	5	10	0	5	10	0	5	10	0	5	10	
6	0	6	12	3	9	0	6	12	3	9	0	6	

1,2,4 have unique inverse, but the others not.

CS3235 notes.

Consider: Stupid system: Z_{15}

If our rule was: multiply code symbol by key symbols 4,2,1 decode by dividing (i.e. multiplying by inverse)

- ✓ Then 3,5,9 encodes to 4 * 3, 2 * 5, 1 * 9 = 12, 10, 9. We decode with 12 * 4, 10 * 8, 9 * 1 = 3, 5, 9
- ✗ However, choosing other keys without unique inverses will cause problems.

CS3235 notes.

Why primes?

In the book "Contact", the heroine recognizes an alien communication because it starts...

2.. 3.. 5.. 7.. 11.. 13.. 17.. 19.. 23...²

²Actually 1,2,3,5... :)

CS3235 notes.

Why primes?

For 2500 years mathematicians studied prime numbers just because they were interesting, without any idea they would have practical applications. Possible real-world uses:

- 1. Sometimes... a prime number of ball bearings arranged in a bearing, to cut down on periodic wear (also *gear* teeth).
- 2. Possibly... the 13 and 17-year periodic emergence of cicadas may be due to coevolution with predators (that lost and became extinct).

CS3235 notes.

Not primes...

If you want 3 not-primes in a row, calculate 4 * 3 * 2 * 1 = 4!, and choose the numbers 4! + 2, 4! + 3 and 4! + 4. None can be a prime.

If you want 42,000 not-primes in a row, calculate 42001 * ... * 2 * 1 = 42001!, and choose the numbers 42001! + 2, 42001! + 3... None can be a prime.

If you want 4847584765843775375983487509485945495840 not-primes ...

CS3235 notes.

a	a^1	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}
2	2	4	8	5	10	9	7	3	6	1
3	3	9	5	4	1	3	9	5	4	1
4	4	5	9	3	1	4	5	9	3	1
5	5	3	4	9	1	5	3	4	9	1
б	6	3	7	9	10	5	8	4	2	1
7	7	5	2	3	10	4	6	9	8	1
8	8	9	6	4	10	3	2	5	7	1
9	9	4	3	5	1	9	4	3	5	1
10	10	1	10	1	10	1	10	1	10	1

Another example

 $\mathsf{result} = 7^{1215} \bmod 13$

CS3235 notes.

Page number: 143

Another example

result=

62247027506732273704655645590797926890623986483292191309020787710924 86991072740587065198907810173838994978267934813009677708927826601313 55777365361484044783800851222817392261341421370762400507026834564501 61478881858016233581815507729190060733863810985820998417753776670372 86814739670120315712396914000184822340352355906455155667534102473964 53541377412583676260706359331048403293779053704648771069764131865422 62299505280557584280574185802694213299802280179325494560628948940739 34448228464915119714116869895958794732024285742690180232449402567101 05083114967356334295809219455711191131246974627173111242792554453321 16504914530077241996189357298508605206780120789880835525222341940514 58556732086842042388893209157040799864871901064991230860288657545878 54838031902109935110264503891544145872580747830622294066978047059698 08888224976779404912792017633095411318555938776800816778624695807909\ 49705787192596277127796303487781814106147375370904627195995589087276 8469943 mod 13 = 5

CS3235 notes.

How did I work that out?

I used bc

An arbitrary precision calculator language

CS3235 notes.

Another example

result = $7^{1215} \mod 13$ = $7^{1215} \mod 12 \mod 13$

CS3235 notes.

Summary

We can do **BIG NUMBER maths** without calculating **BIG** numbers.

CS3235 notes.

Euler's theorem

Theorem (Euler): If n is any positive integer and a is any positive integer less than n with no divisors in common with n, then

 $a^{\phi(n)} \operatorname{mod} n = 1,$

where $\phi(n)$ is the *Euler phi function*:

 $\phi(n)=n(1-1/p_1)\ldots(1-1/p_m),$

and p_1, \ldots, p_m are all the prime numbers that divide evenly into n, including n itself in case it is a prime.

CS3235 notes.

a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}
4	8	1	2	4	8	1	2	4	8	1	2	4
9	12	6	3	9	12	6	3	9	12	6	3	9
1	4	1	4	1	4	1	4	1	4	1	4	1
10	5	10	5	10	5	10	5	10	5	10	5	10
6	6	6	6	6	6	6	6	6	6	6	6	6
4	13	1	7	4	13	1	7	4	13	1	7	4
4	2	1	8	4	2	1	8	4	2	1	8	4
6	9	6	9	6	9	6	9	6	9	6	9	6
10	10	10	10	10	10	10	10	10	10	10	10	10
1	- 11	1	11	1	11	1	11	1	11	1	11	1
9	3	6	12	9	3	6	12	9	3	6	12	9
4	7	1	13	4	7	1	13	4	7	1	13	4
1	14	1	14	1	14	1	14	1	14	1	14	1
CS3235 notes. Page number: 157												

<text><text><text><equation-block><text><text><text><text>

