

2. The Fiji rugby team will win against the All Blacks (New Zealand rugby team) the next time they play.

Question: Which sentence contains the most information?

Information theory		
Nyquist (1924) and Hartley (1928) laid the foundations:		
✓ Hartley showed that the information content is proportional to the <i>logarithm</i> of the number of possible messages. Integers between 1 and n need log ₂ n bits.		
 Shannon developed a mathematical treatment of communication and information in an important paper at 		
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html		
CS3235 notes. Page number: 168		

<section-header><section-header><image><image><text><text><text>

CS3235 notes.

 $H_x = P_x \log_2 \frac{1}{P_x}$

If the probability of occurence of each symbol is the same, we can derive Hartley's result, that the average amount of information transmitted in a single symbol (the source *entropy*) is

 $H(X) = \log_2 n$

where X is a label referring to each of the source symbols x_1, \ldots, x_n .

CS3235 notes.

Entropy - same probability

Symbols	Entropy of each symbol	Bits needed
2	$H_x = \frac{1}{2}\log_2 2 = \frac{1}{2}$	$2 * \frac{1}{2} = 1$
4	$H_x = \frac{1}{4}\log_2 4 = \frac{1}{2}$	$4 * \frac{1}{2} = 2$
8	$H_x = \frac{1}{8}\log_2 8 = \frac{3}{8}$	$8 * \frac{3}{8} = 3$
16	$H_x = \frac{1}{16} \log_2 16 = \frac{4}{16}$	$16 * \frac{4}{16} = 4$
21	$H_x = \frac{1}{21} \log_2 21 = \frac{4.39}{21}$	$21 * \frac{4.39}{21} = 4.39$

CS3235 notes.

Page number: 173

Entropy - different probability

However, if the probability of occurence of each symbol is not the same, we derive the following result, that the source *entropy* is

$$H(X) = \sum_{i=1}^{n} P_{x_i} \log_2 \frac{1}{P_{x_i}}$$

Shannon's paper shows that H determines the channel capacity required to transmit the desired information with the *most* efficient coding scheme.

CS3235 notes.

CS3235 notes.

Encoding the letters

A fixed size 3-bit code, and then a more complex code:

Symbol	3-bit code	Complex code
Α	000	0
в	001	10
С	010	1100
D	011	1101
E	100	1110
F	101	1111

CS3235 notes.

Analysis of encoding

The average length of the binary digits needed to encode a typical sequence of symbols using the complex encoding is

$$L(X) = \sum_{i=1}^{n} P_{x_i} \bullet \text{sizeof}(x_i)$$

= $\frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{4}{16} * 4$
= $0.5 + 0.5 + 1.0$
= 2 bits/symbol

i.e. it is more efficient, averaging only 2 bits for each symbol transmitted.

CS3235 notes.

Entropy and transmission rate

However, a better argument is to consider the difference between the entropy of the source and the conditional entropy of the received data:

 $r(X) = H(X) - H(X \mid y)$

where $H(X \mid y)$ is the *conditional* entropy of the received data.

CS3235 notes.

Example

The right hand image has been encoded as a stream of bits, and then each bit has been selected and - on the flip of a coin - changed or not. As you can see - no information is present.

CS3235 notes.

	Huffman encoding	
How can whether the letters	we get knowledge about the frequer in the English language?	ncy of (say)
(answer)		
CS3235 notes.		Page number: 185

Huffman encoding	
0 0	
CS3235 notes.	Page number: 186

Our algorithm for encoding is simple - we calculate the tree encoding knowing the frequency of each letter:

Symbol	Coding
Е	00
т	10
А	010
0	011
N	110
S	111

To decode, traverse the tree taking a left or right path according to the bit. The leaf has our symbol.

CS3235 notes.

Page number: 187

CS3235 notes.

Redundancy

✓ If we look at English text a symbol at a time⁴, the redundancy is about 0.5.

✓ This indicates that it should be simple to compress English text by about 50%.

✓ This sort of redundancy is a *unitless* relative redundancy

⁴That is, without considering letter *sequences*.

CS3235 notes.

Unicity distance

In general

- ✓ Longer key length then longer unicity distance
- ✓ Redundancy inversely proportional to unicity distance
- Estimates the minimum amount of ciphertext for which there is only a single plaintext solution on doing a brute force attack...

CS3235 notes.

Information flow

We have a definition of information flow based on the conditional entropy $H(x \mid y)$ of some x given y:

Definition 5. The command sequence c causes a flow of information from x to y' if H(x | y') < H(x | y). If y and x are independent, then H(x | y) = H(x).

We can use this to detect *implicit* flows of information, not just explicit ones in which we directly modify an object.

CS3235 notes.

Page number: 195

y' even though we do not ever assign y' directly from some function of x. In other words we have an implicit flow of information from x to y'.

CS3235 notes.

Information flow

Formal treatment by considering the entropy of x. If the likelihood of x > 5 is 0.5, then H(x) = 1. We can also deduce that H(x | y') = 0, and so

 $H(x \mid y') < H(x \mid y) = H(x) = 1$

and information is flowing from x to y'. Paper gives some background.

CS3235 notes.

