
Chapter 4

Lecture 4 - Information
theory
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Information theory

The term information is commonly understood. Consider
the following two sentences:

1. The sun will rise tomorrow.

2. The Fiji rugby team will win against the All Blacks (New
Zealand rugby team) the next time they play.

Question: Which sentence contains the most information?
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Information theory

✘ Temperature today is OK, Temperature today is OK,
Temperature today is OK, Temperature today is OK,
Temperature today is OK, Temperature today is OK,
Temperature today is OK, Temperature today is OK,
Temperature today is OK, Temperature today is OK, ...

... total information here is close to zero!

?

More information means less predictable

Less information means more predictable
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Information theory

Nyquist (1924) and Hartley (1928) laid the foundations:

✔ Hartley showed that the information content is proportional
to the logarithm of the number of possible messages.
Integers between

�
and � need �������	� bits.

✔ Shannon developed a mathematical treatment of
communication and information in an important paper at

http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
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Information theory model

ReceiverSource
Information

Transmitter
Destination

Channel

Source
Noise

(or sink)

The relevance of Shannon to secrecy is in another important
paper at

http://www.cs.ucla.edu/˜jkong/research/security/shannon.html
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Entropy

In our communication model, the units of transmission are
called messages, constructed from an alphabet of (say)
� symbols � � � �������	�
�
���
��� each with a probability of
transmission ��� .
We associate with each symbol � a quantity ��� which is a
measure of the information associated with that symbol.

� ��� � � ����� �
�

� �
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Entropy

� ��� � � ����� �
�

� �
If the probability of occurence of each symbol is the same,
we can derive Hartley’s result, that the average amount
of information transmitted in a single symbol (the source
entropy) is

� ����� � ��� � � �
where

�
is a label referring to each of the source symbols

� � ���	�
�
��� � .
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Entropy units

Our units for entropy can be bits/second or bits/symbol , and
we also sometimes use unit-less relative entropy measures
(relative to the entropy of the system if all symbols were
equally likely).
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Entropy - same probability

Symbols Entropy of each symbol Bits needed� � � � �� ��� � � � � �� ��� �� � �
� � ��� �� ��� � � � � �� � � �� � �
� � ��� �� ��� � � � � �� ��� �� � 	��
 � � � ��
� ����� � ��
 �

�
�
� ��
�� �

�
� � �
� � � ��� �� � ����� � � � �

��� ���� � � ��� ��� ���� � � � � 	��
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Entropy - different probability

However, if the probability of occurence of each symbol is
not the same, we derive the following result, that the source
entropy is

� � � � �
�
��� �

� ��� ��� � �
�

� ���
Shannon’s paper shows that � determines the channel
capacity required to transmit the desired information with
the most efficient coding scheme.
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Entropy - different probability

If we had a source emitting two symbols, � and
�
, with

probabilities of
�

and � , then the entropy of the source is

������� � �	
��

����� ���������

�
� � �

� ��� ����� � ����� � �!��� � ��� � bits/symbol

Note that
�#"!$%'&)(+* �!��� �

�
*
� �
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Entropy - different probability

If we were transmitting a sequence of letters A,B,C,D,E and
F with probabilities �� , �� , ��
� , ��
� , ��
� and ��
� , the entropy for the
system is

� � � � �
�
� ��� � � �-,

�
� ����� � � ,

�
��
 ����� � ��


� � �/. , � �/. , � �0�
� �

bits/symbol
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Encoding the letters

A fixed size 3-bit code, and then a more complex code:

Symbol 3-bit code Complex code

A 000 0

B 001 10

C 010 1100

D 011 1101

E 100 1110

F 101 1111
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Analysis of encoding

The average length of the binary digits needed to encode a
typical sequence of symbols using the 3-bit code is

� ����� � �	
��
 ��� � ��� sizeof

� ��� �

� �
� � � �

�� � � �
�
�
� � �� � ��� ��� ����� ��� �����

� � bits/symbol
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Analysis of encoding

The average length of the binary digits needed to encode a
typical sequence of symbols using the complex encoding is

� ����� � �	
��
 � � � � � sizeof

� ��� �

� �
� � ���

�� � � �
�
�
� � �� � ��� ��� ��� � � � �

� � bits/symbol

i.e. it is more efficient, averaging only 2 bits for each symbol
transmitted.
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Entropy and transmission rate

If our source was transmitting � and
�

bits with equal
probability, but the received data was corrupted 50% of the
time, we might reason that our rate �

� � �
of information

transmission was ���/. , because half of our data is getting
through correctly.

ReceiverSource
Information

Transmitter
Destination

Channel

Source
Noise

(or sink)
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Entropy and transmission rate

However, a better argument is to consider the difference
between the entropy of the source and the conditional
entropy of the received data:

�
����� � � ������� � � � ��� �

where � ��� ��� �
is the conditional entropy of the received

data.
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Entropy and transmission rate

� ��� ��� � � ���/. � ��� � � �-, ���/. � ��� � � �

� �

and � ��� � � �
(shown before)

so �
��� � � � ��� ��� � ��� ��� �

� � bits/symbol

This is a much better measure of the amount of information
transmitted.
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Example

The right hand image has been encoded as a stream of bits,
and then each bit has been selected and - on the flip of a
coin - changed or not. As you can see - no information is
present.
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Huffman encoding

An immediate question of interest is “What is the minimum
length bit string that may be used to compress a string of
symbols?”.

The Huffman encoding minimizes the bit length given the
frequency of occurence of each symbol � . The resultant bit
string in the best case will be the length predicted from the
calculation of the source entropy.

�
Note that it presupposes knowledge about these frequencies.
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Huffman encoding

✔ How can we get knowledge about the frequency of (say)
the letters in the English language?

(answer)
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Huffman encoding

1

1

1

1

0 1

0

A O N S

T

0

0 0
E

Less common characters use longer bit strings.
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Huffman encoding

Our algorithm for encoding is simple - we calculate the tree
encoding knowing the frequency of each letter:

Symbol Coding

E 00

T 10

A 010

O 011

N 110

S 111

To decode, traverse the tree taking a left or right path
according to the bit. The leaf has our symbol.
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Redundancy

The ratio of the entropy of a source � � � �
to what it would

be if the symbols had equal probabilities � ������� , is called
the relative entropy. We use the notation ��� ��� � , and

�����	��

� ���	��

�����	��


The redundancy of the source is
� � � � ��� �

���	��

� ������������
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Redundancy

✔ If we look at English text a symbol at a time � , the
redundancy is about ���/. .

✔ This indicates that it should be simple to compress
English text by about 50%.

✔ This sort of redundancy is a unitless relative redundancy

�
That is, without considering letter sequences.
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Unicity distance

Defined by Shannon - an approximation to the amount of
ciphertext such that the the sum of the source entropy and
the encryption key entropy is the same as the number of
ciphertext bits used.

✔ Ciphertexts longer have only one meaningful decryption

✔ Ciphertexts shorter may have more than one meaningful
decryption (and hence be stronger, as a hacker will not
know which one is correct)
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Unicity distance

✔ The longer the unicity distance, the better the
cryptosystem

✔ Unicity distance
�

is the entropy of the key divided by
the redundancy of the source, and is approximately

� � ��� � ���� ��� � � �

( � key size,
�

redundancy, � number of symbols).
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Unicity distance

26 letter alphabet, and 26! keys

� � ��� � � � 
��
� �/. ��� � � � 


� ���
� ��� � � ���� � �

So given a ciphertext of 27 symbols, a unique decoding is
possible.
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Unicity distance

In general

✔ Longer key length then longer unicity distance

✔ Redundancy inversely proportional to unicity distance

✔ Estimates the minimum amount of ciphertext for which
there is only a single plaintext solution on doing a brute
force attack...
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Information flow

✔ We may also more abstractly model some security
policies by considering the flow of information in a
system.

✔ We can use entropy to formalize this.

✔ In this context, we can establish quantitative results
about information flow in a system, rather than just
making absolute assertions � .

�
For example, “System X reveals no more than 25% of the input values”.
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Information flow

We have a definition of information flow based on the
conditional entropy � � � ��� �

of some � given
�
:

Definition 5. The command sequence � causes a flow of
information from � to

� �
if � � � ��� � ��� � � � ��� �

. If
�

and �
are independant, then � � � ��� � � � � � � .

We can use this to detect implicit flows of information, not
just explicit ones in which we directly modify an object.
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Information flow

Consider this example:

if x>5 then
y := 0

else
y := 1;

After this code segment, we can determine if � � . from� �
even though we do not ever assign

� �
directly from some

function of � . In other words we have an implicit flow of
information from � to

� �
.

CS3235 notes. Page number: 196



Information flow

Formal treatment by considering the entropy of � . If the
likelihood of � � . is � �/. , then � � � � � �

. We can also
deduce that � � � ��� � � � � , and so

� � � ��� � ��� � � � � � � � � � � � � �

and information is flowing from � to
� �

. Paper gives some
background.
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