
Chapter 5

Lecture 5 - Information
theory

CS3235 notes. Page number: 223

Tutorial 3 Q1: Intuition...

Question: Longest time to transfer (i) 1000 random
characters (ii) 1000 ’A’ characters followed by a ’B’ (iii)
1000000 ’A’ characters followed by a ’B’. (Look for size
of information...)

Comment: The entropy for the (i) should be as high as
possible, because the source is transmitting the MOST
amount of information, the least predictable data. For 7-
bit ASCII it will be 7 bits per symbol.
The entropy for the (ii) and (iii) should be as low
as possible, as the information is almost completely
predictable.

CS3235 notes. Page number: 224

Tutorial 3 Q1: Comments

Comment: Since the source emits a fixed string, we can
argue that the entropy of the source is zero - it is
completely predictable.
But if the receiver is not aware of this, the first message
does contain some (a small amount) of information.

Note also: The difference in information between
1000 ’A’ characters followed by a ’B’, and
1000000 ’A’ characters followed by a ’B’ is very small,
despite the difference in size of the data.

CS3235 notes. Page number: 225

Tutorial 3 Q1: Maths...

Question: Prove it...

Comment: The entropy for the first source is 7 bits per
symbol as discussed before, and so the 1000 characters
will need 7000 bits = 875 bytes.
Can encode the other two sources much more
compactly: 1000 ’A’ characters followed by a ’B’ is
much shorter than 7000 bits...

CS3235 notes. Page number: 226

Tutorial 3 Q2: Intuition...

Question: Estimate entropy..

Comment: The relative entropy for the (i) will be 1,
whereas the other two will be close to 0, or 0 (depending
on interpretation).

CS3235 notes. Page number: 227

Tutorial 3 Q3: Maths...

Question: ... estimate the average size of a best encoded
128 character message. Relative entropy?

Comment: The entropy for the system is

������� � �	�
����� 	�� ��
����� � ���
� �
����� � �

� � 		�� � 	�
������� �
� �� ���� ���� �! #" �%$ � � "'&� 	(") $ bits/symbol

Fit 128 characters into 519 bits, or 65 bytes. Relative
entropy is

*,+.-0// 1 2436587 .

CS3235 notes. Page number: 228

Tutorial 3 Q3: Oh ... and...

Comment: The characters E T A O N S H R D L U are the
most common letters in written English (in that order),
and so English text does not have a high entropy (some
symbols are more likely than others). As a result of this
English text is easily compressible.

CS3235 notes. Page number: 229

Tutorial 3 Q4: Maths...

Question: the import of the “necessary and sufficient
condition for perfect secrecy” in reading.

Comment: Perfect secrecy implies that by observing the
ciphered text, you can learn nothing about the original
message. The import of the necessary and sufficient
condition, is that for perfect secrecy, the key length ���
must be the same number of bits as the message ��� .
This sort of key is commonly called a one-time-pad.

Modern cryptographic practice is not perfect secrecy - just
computationally difficult...

CS3235 notes. Page number: 230

An aside ...

CS3235 notes. Page number: 231

The first worry...

CS3235 notes. Page number: 232

J’accuse! J’accuse!

✔ Virusses, but also...

✔ Keyloggers, spy software in some products

✔ Removal may lead to broken S/W (Kazaa)
✔ CoolWebSearch: slowdowns in IE when typing into

text boxes. The hijack installed a stylesheet that used a
flaw in Internet Explorer and allowed a .css stylesheet
file to execute Javascript code.

CS3235 notes. Page number: 233

A lot of processes?

CS3235 notes. Page number: 234

Look closely at processes...

CS3235 notes. Page number: 235

An exploit...DDoS Stinkbot

✹ This trojan is an IRC bot, controlled by a remote attacker
to use infected systems to initiate a Distributed Denial
of Service attack against others. When run, it copies its
components to the SYSTEM directory with the following
filenames:

✹ SETUPINF.EXE (Server component)
✹ WINVIDEO.EXE (Flooding component)

CS3235 notes. Page number: 236

Using regedit...

CS3235 notes. Page number: 237

Now - what about Ads?

Hijack this: lists all installed browser add-on, buttons,
startup items and removes them.

CWshredder: removes CoolWebSearch

Spybot S&D: remove spyware

Ad-aware: Data-mining, aggressive advertising, Parasites,
Scumware, selected traditional Trojans, Dialers, Malware,
Browser hijackers, and tracking components...

CS3235 notes. Page number: 238

Hijack this

CS3235 notes. Page number: 239

CWshredder

CS3235 notes. Page number: 240

Spybot - Search and Destroy

CS3235 notes. Page number: 241

Search and Destroy

CS3235 notes. Page number: 242

AD-aware...

CS3235 notes. Page number: 243

Ad-aware...

CS3235 notes. Page number: 244

And the end result?

Hey - the computer is a whole lot faster!

but ... 1 month later ...

CS3235 notes. Page number: 245

Back to slide 194

CS3235 notes. Page number: 246

Algorithms

1. Pseudo-random number generation

2. Chinese remainder theorem

3. Extended Euclidean algorithm

4. Testing for primes

CS3235 notes. Page number: 247

Pseudo-random number generation

✔ Random numbers or sequences are useful.

✔ Generate a long key sequence for an xor-encrypted
message.

✔ Generate large primes at random

CS3235 notes. Page number: 248

Linear congruential method

Generate the next number ������� , from ��� by calculating

� ����� 1 �
	 � ��� �������� �

where 	 , � and are carefully chosen to generate a long
random sequence.

CS3235 notes. Page number: 249

Linear congruential method

If we chose 1 2 , 	 1 7�� 5 2�� and � 1 �47�������5�������� 1 �� ��! 7 ,
then starting with � - 1 7�" we get the sequence

��� 1 7#��5 2�� � - ���$� �47����%� 5�������� 1 7#��5 2&�
��' 1 7#��5 2�� ��� ���$� �47����%� 5�������� 1 ��5��(����)��%�&*
� 1 7#��5 2�� ��' ���$� �47����%� 5�������� 1 7#��������)�2�2&�(�
� * 1 7#��5 2�� � ���$� �47����%� 5�������� 1 * 5(�&*�������)�5

CS3235 notes. Page number: 250

Linear congruential weakness

Record three successive values of the pseudo-random
number generator � , and solve the simultaneous equations:

�#����� 1 �
	 �#� � ���� �$� �
�#��� ' 1 �
	 �#����� � ���� �$� �
�#��� 1 �
	 �#��� ' � ���� �$� �

Should use technique not susceptible to this form of
analysis.

�
Perhaps by knowing part of the plaintext...

CS3235 notes. Page number: 251

Chinese remainder theorem

The following problem was posed by Sun Tse 2000 years
ago:

There are certain things whose number is unknown.
Repeatedly divided by 3, the remainder is 2; by 5 the
remainder is 3; and by 7 the remainder is 2. What will
be the number?

This is now known as an example of the Chinese Remainder
Theorem...

CS3235 notes. Page number: 252

Chinese remainder theorem

Theorem 4: Two simultaneous congruences � 1 � � ����� � �
and � 1 � ' � �$� � ' are only solvable when � � 1
� ' � �$� ����� � � � � " � ' � � . The solution is unique modulo
�
� � � � � " � ' � .

Knowing the remainder of � when it’s divided by � and the
remainder when it’s divided by) allows you to determine the
remainder of � when it’s divided by

�
� � �)�" � � 1 7�) .

CS3235 notes. Page number: 253

Chinese remainder theorem

The original problem:

� 1 � ���$� � �(7 �
� 1 � ���$�) � � �
� 1 � ���$� � �
� �

From (1), we know that � 1 � � � � for some � . Substituting
this in (2) gives � � 1 7 � �$�) . This reduces to a simpler
equation � 1 � � �$�) which is equivalent to � 1) � � �
for some � . Substituting this back into � 1 � � � � gives us
� 1 7#) � � 5 . Substituting this in (3) gives 7#) � � 5 1 � � �$� � ,
or � 1 7 � �$� � , i.e. � 1 ��� � 7 . From this we can see that
� 1 7 2�)�� � ��� . Note that 7 2�) 1 �

� � �
� ")�" � � and the solutions
are ����",7#��5�" 3 3 3 .

CS3235 notes. Page number: 254

Import of CRT

Demonstrates to us that a number less than the product of
two primes can be uniquely identified by its residue modulo
those primes.

This is useful in the RSA cryptosystem to be investigated
later.

CS3235 notes. Page number: 255

Extended Euclidean algorithm

Some theory to compute the multiplicative inverses.

To find the gcd of two numbers, using the prime factorization
of the numbers. For the gcd of ����*(� and 7�)%� :

����*�� 1 ��� ��� ��� ��� 7�*
7#)(� 1 ��� ��� 7�7

� ��� � � ����*�� ",7�)(� � 1 ��� � 1 7 �

CS3235 notes. Page number: 256

Euclidean algorithm

Unfortunately, it is not easy to find the prime factors of
integers. The gcd of two integers can however be found
by repeated application of division, using the Euclidean
algorithm.

✔ You repeatedly divide the divisor by the remainder until
the remainder is 0.

✔ The gcd is the last non-zero remainder in this algorithm.

CS3235 notes. Page number: 257

Euclidean algorithm example

�����������
	�� � ����������
	������������������������! #"��$	����!�
%�&�')(� *,+-�.*,+ (�0/ (
*,+ (� *��1/ (�32)4
/ (� *��52)4-� * (
2)4 � +-�.* (

687�9 �;: %�&�')(�< *,+ (>= � * (

CS3235 notes. Page number: 258

Extended Euclidean algorithm

✔ If the � � � � 	 "�� � 1 � then there exist integers � and � so
that � 	 � � � 1 � .

✔ This algorithm finds these integers � and � and give us
a mechanism to calculate the multiplicative inverse of an
element � modulo � .

CS3235 notes. Page number: 259

Extended Euclidean algorithm

1. We begin by dividing � by � , and as we carry out each
step � of the Euclidean algorithm discovering the quotient��� , we also calculate an extra number, ��� . For the first two
steps � - 1 2 and � � 1 7 .

2. For the following steps, we calculate ��� 1 �	��
 ' !
�	��
 � ����
 ' ���$� � . The calculation is continued for one step
after the Euclidean algorithm finishes.

3. If the last non-zero remainder occurs at step � , then if
this remainder is 7 , � has an inverse and it is �� � ' .

CS3235 notes. Page number: 260

Extended Euclidean algorithm

The inverse of 7�) modulo ��� , showing the method:

2�� ��� 1 7 � 7#) � 7�7 � - 1 2
7�� 7#) 1 7 � 7�7 � � � � 1 7
��� 7�7 1 � � � � � � ' 1 2 ! 7 � 7 � �$� ��� 1 ��)
��� � 1 7 � � � 7 � 1 7 ! ��)�� 7 ���$� ��� 1 �
��� � 1 ��� 7 � 2 � * 1 ��) ! ��� � ���$� ��� 1 �47

� / 1 � ! � 7 � 7 ���$� ��� 1 �

This indicates that the inverse of 7#) is � . We can verify this
by multiplying: 7�) � � ���$� ��� 1 7 .

CS3235 notes. Page number: 261

Primality testing

Commonly use statistical testing methods to determine
primality.

Quick Quiz! Is *�� %>< % + '�< % 2�� < / % '�< % * &�< & � &�< &�' * < +�2 / < 4�*!4 < % /�/ < * % 2

prime
�
?

After choosing a large random (odd) number � , we can
quickly see if � is divisible by � , � and so on (say all primes
up to 7 2�2 2). If our number � passes this, then we can
perform a statistical primality test.

	
Note that this is only a 33 digit number, and we typically use prime numbers with

hundreds of digits.

CS3235 notes. Page number: 262

Lehmann test

1. Choose a random number � (for witness) less than �
2. If �

���
 ����� '	�
 � 7 mod � , � is not prime

3. If �
���
 ���� '
 � 7 mod � , the likelihood is less than 243)

thatp is not prime

Repeat the test over and over, say � times. The likelihood
of a false positive will be less than �'�� . Other tests, such as
the Rabin-Miller test may converge more quickly.

CS3235 notes. Page number: 263

Primes is in P!

✔ A group at the Indian Institute of Technology have
discovered the unexpected result that testing a number
for primality can be done in polynomial time, rather than
using probabilistic tests as just shown.

✔ This is unlikely to affect the effectiveness of public key
systems.

✔ The paper is only 7 pages long and is beautifully written.

CS3235 notes. Page number: 264

