

Chapter 12

Lecture 12 - Final lecture

CS3235 notes.

Tut 9: Q1 - bad code

The code is supposed to clear the password buffer:

```
// ... Zero out all the contents of the buffer:
bzero( buffer, MaxPasswordSize );
// ... Immediately return the memory to the OS:
free( buffer );
```

But ... the compiler optimizes the bzero() away - It reasons: If you are going to free() the memory, then any previous unused assignments can be discarded.

Leaves the password in memory.

CS3235 notes.

Page number: 542

Answer: A solution might be for the instructor to send the students (securely) a secret key, which only they could know. The students might then use this key to encrypt their submission.

If the encryption was symmetric, a student on the course could forge someone else's submission. So better to use asymmetric.

It might be useful to consider other variations. For example - what if the bad-guys could listen to the *"single secure message"*? What if the bad-guys had a collaborator? and so on...

CS3235 notes.

Tut 9: Q3 - Describe and contrast

Still fast, but considered significantly more difficult to attack than (say) DES, due to large key size and defined mathematical properties.

CS3235 notes.

Quantum cryptography

 Quantum *cryptography* uses laws of quantum mechanics
 Heisenberg Uncertainty applies to some pairs of (atomic) particles. Measuring one property affects another.

A snooper is easily detected, and there are various protocols for using quantum effects to share keys.

Alice randomly chooses one of four polarizations: 0, 90, or 45, 135 degrees.

CS3235 notes.

Harry the hacker
 If Harry the hacker senses (some of) the photons, he must choose which polarization to use, and will affect the photon.
 Bob and Alice compare a subset of the bits that they think they know to detect snooping.
3. If no snooping, then rest of bits are OK.
Quantum cryptography systems are now commercially available, operating over reasonably long (40km) fibre.
CS3235 notes. Page number: 550

More insecurity

...Who are you and how did you get in here?

...I'm a locksmith. And, I'm a locksmith.

[Leslie Nielsen]

CS3235 notes.

Page number: 551

Design principles
* Least common mechanism: Minimize the amount of mechanism common to more than one user and depended on by all users. (online store and D.O.S.).
* Psychological acceptability: Human interface easy to use.
CS3235 notes. Page number: 554

	IPSec point-to-point				
CS3235 notes.		Page number: 557			

IPSec headers

There are two types of header, one used for **authentication**, and the other used for **encryption**:

- 1. AH the Authentication Header for data integrity, antireplay and authentication
- 2. **ESP** the **Encapsulating Security Payload** header, for confidentiality. ESP can also provide AH services.

Communicating parties agree on a **Security Association** (SA), one SA for each direction, and one SA for each type of communication.

CS3235 notes.

	Modes of operation	
✤ An end-to	o-end SA - Transport mode	
	Original IPv6 hdr AH Transport segment	
	authenticated	
	Original IPv6 hdrESPTransport segmentESP	
	encrypted	
	authenticated	
CS3235 notes.	F	Page number: 560

Temporal claims
* We got here again without making any progress!
The support for temporal claims takes the form of:
 Endstate labels - for determining valid endstates Progress labels - claim no non-progress cycles Never claims - impossible temporal assertions
CS3235 notes. Page number: 564


```
Promela example
proctype application( chan in, out )
{
   int i=0, j=0, last_i=0;
   do
     :: in?accept(i) ->
           assert( i==last_i );
           if
             :: (last_i!=MAX) -> last_i = last_i+1
             :: (last_i==MAX)
           fi
     :: out!next(j) ->
           if
             :: (j!=MAX) -> j=j+1
             :: (j==MAX)
           fi
   od
```

CS3235 notes.

Formal evaluation - ITSEC
From Dutch, English, French and German national security evaluation criteria.
* Adaptable.
 Sponsor determines operational requirements, threats and security objectives.
ITSEC specifies the interactions and documents between the sponsor and the evaluator.
CS3235 notes. Page number: 572

ITSEC

- Again there are various levels of evaluation: E0..E6, with
 E6 giving the highest level of assurance it requires two independent formal verifications.
- # [Woo98] First E6 certification of a smart-card system.
 - The smart-cards are electronic purses that is they carry value,
 - * Forgery must be impossible.
 - * The certification encompassed the communication with the card, as well as the software within the card, and at the bank.

CS3235 notes.

	Data Diode E6, BLP	
ht	tp://www.tenix.com/Main.asp?ID=908	
	High Security Data Diode	
	Low security	
CS3235 notes.		Page number: 574

Minimal hardware biometrics

- * Voices Record and process voice leading to either speaker verification or recognition.
- **Faces** Capture either a static or moving image of a face.
- Keystrokes capture a sequence of keystrokes, recording timing.

Combinations of characteristics may be used, but in general biometric techniques are **not reliable** on their own. Good second key for **separation of privilege**.

```
CS3235 notes.
```


- It uses various schemes including patented ones like IDEA and RSA.
- The patent on IDEA allows non-commercial distribution, and the RSA patent has expired.
- However there are also commercial versions of PGP.
- * PGP can use, for example, 2048 bit primes, and it is considered unlikely that PGP with this level of encryption can be broken.

CS3235 notes.

Sample attack: CRC-32 on ssh

http://www.cert.org/incident_notes/IN-2001-12.html

Used in the matrix....

CS3235 notes.

CS3235 notes.

Someone wanted voting protocols
Example with Alice, Bob and Charles (!), who vote and then encrypt and sign a series of messages using public-key encryption. For example, if Alice votes v_A , then she will broadcast to all other voters the message
$R_A(R_B(R_C(E_A(E_B(E_C(v_A)))))))$
where R_A is a random encoding function which adds a random string to a message before encrypting it with <i>A</i> 's public key, and E_A is public key encryption with <i>A</i> 's public key.
CS3235 notes. Page number: 587

Voting protocols	
* Each voter then signs the message and decrypts on level of the encryption.	Ie
At the end of the protocol, each voter has a complet signed audit trail and is ensured of the validity of the vote	t <mark>e</mark> e.
CS3235 notes. Page number: 5	588

First round...

Who	Receives and removes one level		and sends on
Alice:	$R^1_A(R^1_B(R^1_C(E^1_A(E^1_B(E^1_C(v_1))))))$	\rightarrow	$R^1_B(R^1_C(E^1_A(E^1_B(E^1_C(v_1)))))$
	$R_A^2(R_B^2(R_C^2(E_A^2(E_B^2(E_C^2(v_2))))))$	\rightarrow	$R_B^2(R_C^2(E_A^2(E_B^2(E_C^2(v_2)))))$
	$R^3_A(R^3_B(R^3_C(E^3_A(E^3_B(E^3_C(v_3))))))$	\rightarrow	$R^3_B(R^3_C(E^3_A(E^3_B(E^3_C(v_3)))))$
Bob:	$R^1_B(R^1_C(E^1_A(E^1_B(E^1_C(v_1)))))$	\rightarrow	$R^1_C(E^1_A(E^1_B(E^1_C(v_1))))$
	$R_B^2(R_C^2(E_A^2(E_B^2(E_C^2(v_2)))))$	\rightarrow	$R_C^2(E_A^2(E_B^2(E_C^2(v_2))))$
	$R^3_B(R^3_C(E^3_A(E^3_B(E^3_C(v_3)))))$	\rightarrow	$R^3_C(E^3_A(E^3_B(E^3_C(v_3))))$
Charles:	$R^1_C(E^1_A(E^1_B(E^1_C(v_1))))$	\rightarrow	$E^{1}_{A}(E^{1}_{B}(E^{1}_{C}(v_{1})))$
	$R_C^2(E_A^2(E_B^2(E_C^2(v_2))))$	\rightarrow	$E_A^2(E_B^2(E_C^2(v_2)))$
	$R^3_C(E^3_A(E^3_B(E^3_C(v_3))))$	\rightarrow	$E_A^3(E_B^3(E_C^3(v_3)))$

CS3235 notes.

second round...

Who	Receives and removes one level		and sends on
Alice:	$E_{A}^{1}(E_{B}^{1}(E_{C}^{1}(v_{1})))$	\rightarrow	$E^1_B(E^1_C(v_1))$
	$E_A^2(E_B^2(E_C^2(v_2)))$	\rightarrow	$E_B^2(E_C^2(v_2))$
	$E^{3}_{A}(E^{3}_{B}(E^{3}_{C}(v_{3})))$	\rightarrow	$\operatorname{E}_B^3(\operatorname{E}_C^3(v_3))$
Bob:	$E^1_B(E^1_C(v_1))$	\rightarrow	$E_C^1(v_1)$
	$E_B^2(E_C^2(v_2))$	\rightarrow	$E_C^2(v_2)$
	$E_B^3(E_C^3(v_3))$	\rightarrow	$E_C^3(v_3)$
Charles:	$\overline{E_C^1(v_1)}$	\rightarrow	v_1
	$E_C^2(v_2)$	\rightarrow	v_2
	$E_C^3(v_3)$	\rightarrow	v_3

CS3235 notes.

	A look at the exam paper	
CS3235 notes.		Page number: 594

Exam coverage	
# 10 short answer questions worth 1	mark each
* Longer questions on	
 * Encryption (15 marks) * Checksums/Signatures (4 marks) * Preliminaries (10 marks) * Models (5 marks) * Protocols (6 marks) 	\$)
CS3235 notes.	Page number: 596