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Modeling Language

▪ Book A by Shakespeare 

▪ Book B by J.K. Rowling

▪ Which book is more likely to contain the following 
phrases?

    1. A nice normal day

    2. Wherefore art thou
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Modeling Language

▪ Traditionally, we model language with the notion of a 
formal syntax and semantics.

▪ Vocabulary and grammar

▪ Specify what is included in or excluded from a language

▪ Help us to interpret 
the meaning (semantics) of the sentence
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What’s a language model?

▪ It can be helpful to have a computational (e.g., 
probabilistic) model of a language that is simple 
without the use of a grammar.

▪ A language model is a set of statistics

▪ created based on a collection of text, and 

▪ used to assign a score (e.g., probability) to a sequence of 
words.
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What’s a language model?

▪ Example

▪ chatlog_LangModel: created based on the chat logs in a 
messaging tool (e.g., Telegram)

▪ Word sequence: "Forsooth, there is no one I trust more"

▪ chatlog_LangModel: low probability

▪ Shakespeare_LangModel: created based on the plays 
written by Shakespeare

▪ Word sequence: "Forsooth, there is no one I trust more"

▪ Shakespeare_LangModel: high probability
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Applications of LMs

▪ Deciding between alternatives 

 I either heard "Recognize speech" or "Wreck a nice 
beach", which is more likely?

▪ Speech Recognition

▪ Spelling Correction

▪ Plagiarism Detection

▪ Prediction of what products you’ll browse next

▪ Typeahead prediction on mobile devices

▪ Result Ranking
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The Unigram Model

▪ Views texts as an unordered collection of tokens

▪ Each of the n tokens contributes one count (or 1/n) to the 
model

▪ Also known as a "bag of words"

▪ Outputs a count (or probability) of an input based on 
its individual tokens

▪ Count( input ) = Σ Count ( n )

▪ P( input ) = π P( n ) 
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A Simple Count Model
▪ Let’s take a sentence from each of these artists and 

build two language models:
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Girl 1 want 1

you 1 your 1

know 1 love 1

I 1

… Girl you know I want your love 

I 2 love 1

want 2 and 1

your 2 revenge 1

… I want your love and I want your revenge // … 
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Test: Input queries

▪ Q1: "I want"
Count(LadyGaga): 2 + 2 = 4
Count(EdSheeran): 1 + 1 = 2
Winner: Lady Gaga
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Girl 1 want 1

you 1 your 1

know 1 love 1

I 1

I 2 love 1

want 2 and 1

your 2 revenge 1
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Test: Input queries

▪ Q2: "you know"
P(LadyGaga): 0 + 0 = 0
P(EdSheeran): 1 + 1 = 2
Winner: Ed Sheeran
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Girl 1 want 1

you 1 your 1

know 1 love 1

I 1

I 2 love 1

want 2 and 1

your 2 revenge 1
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Test: Input queries

▪ Q3: "love and revenge"
P(LadyGaga): 1 + 1 + 1 = 3
P(EdSheeran): 1 + 0 + 0 = 1
Winner: Lady Gaga
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Girl 1 want 1

you 1 your 1

know 1 love 1

I 1

I 2 love 1

want 2 and 1

your 2 revenge 1
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Extending the example

▪ Imagine you take your music collection and for each 
song you get the lyrics from the web

▪ Then you can build unigram language models for all 
songs with the same artist or genre

Quick poll: What are your answers to:

 Which artist is most likely to have written some input 
lyric?

 What words are most popular in a specific genre?

 What are the significant phrases used in this genre?
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Of Words Matter Order The

▪ Unigrams LM don’t model word order (hence "bag of 
words")

▪ "want your love" is as likely as "love want your"

▪ We must introduce additional context to model 
order
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Ngram LM

▪ An ngram LM remembers sequences of n tokens

▪ Unigram is just a special case of n=1

▪ Bigrams are ngram LMs where n=2, trigrams where n=3

e.g. "I want your love and I want your revenge"

Information Retrieval 14

START I START START I

I want START I want

want your I want your

your love want your love

… …

want your want your revenge

your revenge your revenge END

revenge END revenge END END

Blanks on slides, you may want to fill in

Use special START 
and END symbols 

for encoding beyond 
the text boundary

Trigram!Bigram
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Ngram LM

▪ A ngram model can predict a current word from the 
n-1 previous context words.  

▪ P( ??| "Please turn off your hand")

How would the unigram, bigram and trigram models 
predict "??"

▪ Unigram (n=1): 

▪ Bigram (n=2):

▪ Trigram (n=3):
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Probability of predicting "??" 
after seeing "Please turn off 

your hand".
What’s your guess about the 

next word?
prediction context of n=5

Blanks on slides, answers on next slide
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Ngram LM

▪ A ngram model can predict a current word from the 
n-1 previous context words. 

▪ P( ??| "Please turn off your hand")

How would the unigram, bigram and trigram models 
predict "??"

▪ Unigram (n=1): P(??)

▪ Bigram (n=2): P(??|"hand")

▪ Trigram (n=3): P(??|"your hand")
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prediction context of n=5

Probability of predicting "??" 
after seeing "Please turn off 

your hand".
What’s your guess about the 

next word?
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From 1 to n

▪ Longer ngram models are more accurate but 
exponentially more costly to construct (why?).

E.g., Shakespeare ngram models

a) To him swallowed confess hear both.  

b)   What means, sir. I confess she? Then all sorts, he is trim, 
captain.

c)   Sweet Prince, Falstaff shall die.  Harry of Monmouth’s grave.

d)   Will you not tell me who I am?  It cannot be but so.
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Yeah, 
that guy
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Complexity

▪ Let |V| stand for the size of the vocabulary used in a 
language.  For English, let’s use |V| = 30,000

▪ For a unigram LM we need to store 
counts/probabilities for |V| words

▪ For a bigram LM, we need to store 
counts/probabilities for (up to) |V|*|V| ordered 
length 2 phrases

▪ Check your understanding: 
What about a trigram model? 

Gets expensive very quickly!
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Probability-based LM

▪ Q1: "I want"

Prob(LadyGaga): .22 * .22 = 4.8E-2

Prob(Ed Sheeran): .14 * .14 = 1.9E-2

Winner: Lady Gaga
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Girl 1 (.14) want 1 (.14)

you 1 (.14) your 1 (.14)

know 1 (.14) love 1 (.14)

I 1 (.14)

I 2 (.22) love 1 (.11)

want 2 (.22) and 1 (.11)

your 2 (.22) revenge 1 (.11)
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Probability-based LM

▪ Q2: "you know"

Prob(LadyGaga): 0 * 0 = 0                              = 1.3E-3

Prob(Ed Sheeran): .14 * .14 = 2.0E-2

Winner: Ed Sheeran

Problem: The probability that Lady Gaga would use "you" or 
"know" in a song isn’t really 0, but that’s what our limited 
data says.

Information Retrieval 20

Girl 1 (.14) want 1 (.14)

you 1 (.14) your 1 (.14)

know 1 (.14) love 1 (.14)

I 1 (.14)

I 2 (.22) love 1 (.11)

want 2 (.22) and 1 (.11)

your 2 (.22) revenge 1 (.11)
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Add 1 Smoothing

▪ Not used in practice, but most basic to understand
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Girl 1 (.14) your 1 (.14)

you 1 (.14) love 1 (.14)

know 1 (.14) and 0 (0)

I 1 (.14) revenge 0 (0)

want 1 (.14)

I 2 (.22) revenge 1 (.11)

want 2 (.22) Girl 0 (0)

your 2 (.22) you 0 (0)

love 1 (.11) know 0 (0)

and 1 (.11)

I 2 (.22) love 1 (.11)

want 2 (.22) and 1 (.11)

your 2 (.22) revenge 1 (.11)

Show the 
zero entries

Girl 1 (.14) want 1 (.14)

you 1 (.14) your 1 (.14)

know 1 (.14) love 1 (.14)

I 1 (.14)
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Add 1 Smoothing

▪ Idea: add 1 count to all entries in the LM, including 
those that are not seen
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Add 1 count to 
all entries and 
recompute the 
probabilities Girl 2 (.13) your 2 (.13)

you 2 (.13) love 2 (.13)

know 2 (.13) and 1 (.06)

I 2 (.13) revenge 1 (.06)

want 2 (.13)

I 3 (.17) revenge 2 (.11)

want 3 (.17) Girl 1 (.06)

your 3 (.17) you 1 (.06)

love 2 (.11) know 1 (.06)

and 2 (.11)

Girl 1 (.14) your 1 (.14)

you 1 (.14) love 1 (.14)

know 1 (.14) and 0 (0)

I 1 (.14) revenge 0 (0)

want 1 (.14)

I 2 (.22) revenge 1 (.11)

want 2 (.22) Girl 0 (0)

your 2 (.22) you 0 (0)

love 1 (.11) know 0 (0)

and 1 (.11)
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Add 1 Smoothing

▪ Q2: "you know"

Prob (LadyGaga): .06 * .06 = 0.04E-2

Prob (Ed Sheeran): .13 * .13 = 1.7E-2

Winner: Ed Sheeran
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Girl 2 (.13) your 2 (.13)

you 2 (.13) love 2 (.13)

know 2 (.13) and 1 (.06)

I 2 (.13) revenge 1 (.06)

want 2 (.13)

I 3 (.17) revenge 2 (.11)

want 3 (.17) Girl 1 (.06)

your 3 (.17) you 1 (.06)

love 2 (.11) know 1 (.06)

and 2 (.11)
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LMs over time…
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https://books.google.com/ngrams

https://books.google.com/ngrams


CS3245 – Information Retrieval

What 7-gram is this?

Information Retrieval 25
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Summary

▪ Ngram LMs are simple but powerful models of language

▪ Probabilistic computation, with attention to missing or 
unseen data

▪ Diminishing returns for larger ngram contexts

▪ Applicable to many classification tasks

References

▪ Jurafsky and Martin. Chap 6,  Speech and Language Processing 

▪ You’ll likely learn this again in 
CS 4248 Natural Language Processing
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