
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 7: Scoring, Term Weighting and the
Vector Space Model

7
Live Q&A
https://pollev.com/jin

CS3245 – Information Retrieval

Last Time: Index Compression
 Collection and vocabulary statistics: Heaps’ and Zipf’s laws
 Dictionary compression for Boolean indexes

 Dictionary string, blocks, front coding

 Postings compression:
 Gap encoding and variable byte encoding

Information Retrieval 2

Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
postings, uncompressed (32-bit words) 400.0
postings, variable byte encoded 116.0

CS3245 – Information Retrieval

Today: Ranked Retrieval
 Scoring documents
 Term frequency
 Collection statistics
 Weighting schemes
 Vector space scoring

 Parametric and zone indexes (Section 6.1) will be
covered next week.

Information Retrieval 3

Ch. 6

CS3245 – Information Retrieval

Problem with Boolean search:
Difficulty in query formulation
 Boolean queries
 Terms + Boolean operators

 Most (non-expert) users are likely to have difficulty in
writing Boolean queries.
 What are the correct terms to use?
 What do the operators mean and how to use them?

Information Retrieval 4

Ch. 6

CS3245 – Information Retrieval

Problem with Boolean search:
Feast or Famine with no differentiation
 Boolean logic is quite strict

 They can result in either too few (=0) or too many
(1000s) results.
 Q1: "Windows 10" AND login AND KB3081444 → 0 hits
 Q2: "Windows 10" OR login OR KB3081444 → 377M hits

 Also called "information overload"

 All the returned results are considered equally good
by the search engine…

Information Retrieval 5

Ch. 6

CS3245 – Information Retrieval

Problem with Boolean search:
Feast or Famine with no differentiation
 Good for expert users with precise understanding of

their needs and the collection.
 Also good for applications: Applications can easily

consume 1000s of results.

 Not good for the majority of users.
 Most users don’t want to wade through 1000s of results.

Information Retrieval 6

Ch. 6

CS3245 – Information Retrieval

Ranked retrieval
 Free text queries: The user’s query is just one or

more words in a human language.

 Ranked results: The results are ranked in the order of
estimated relevance.

 Two separate choices, but a common combination.

Information Retrieval 7

CS3245 – Information Retrieval

Ranked retrieval
 All the users need to do is:
 Write a free-text query and check the top k (≈ 10) results

 If the results are good, the search is done.
 Otherwise, repeat this process with a reformulated query.

 Simple and cost-effective, however…
 The ranking algorithm must work (i.e., most relevant

documents should be ranked as the top results.)

Information Retrieval 8

Ch. 6

CS3245 – Information Retrieval

Scoring as the basis of ranked retrieval
How to rank the documents in the collection with
respect to a query?

 Assign a score to each document
 A number in [0, 1] which measures how well the query and

the document match.

 Sort the documents based on the scores
 Documents with score = 1
 Documents with score = 0.99
 …

Information Retrieval 9

Ch. 6

CS3245 – Information Retrieval

Take 1: Jaccard coefficient
 From Chapter 3 (spelling correction)

 Measures the overlap of two sets A and B
Jaccard (A, B) = |A ∩ B| / |A ∪ B|
Jaccard (A, A) = 1
Jaccard (A, B) = 0 if A ∩ B = 0

 Let A = the set of terms in the query, B = the set of
terms in a document
 Jaccard provides an estimate of how well the query and

the document match

Information Retrieval 10

Ch. 6

CS3245 – Information Retrieval

Jaccard coefficient: Scoring example
What is the query-document match score that the
Jaccard coefficient computes for each of the two
documents below?

 Query: ides of march
 Doc 1: caesar died in march
 Doc 2: the long march

 Results:
 Doc 2
 Doc 1

Information Retrieval 11

Ch. 6

Jaccard (Q, Doc 1) = 1/6
Jaccard (Q, Doc 2) = 1/5

CS3245 – Information Retrieval

Information not considered in Jaccard
 Term Frequency
 Query: Caesar
 Doc A (A story about Caesar): Caesar … Caesar … Caesar …
 Doc B (A list of dictators): Caesar … Hitler …
 A > B since Caesar appears more often in A (i.e., of higher

term frequency).

Information Retrieval 12

Ch. 6

CS3245 – Information Retrieval

Recap: Binary term-document
incidence matrix (from Week 2)

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Information Retrieval 13

Sec. 6.2

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		1		1		0		0		0		1

		Brutus		1		1		0		1		0		0

		Caesar		1		1		0		1		1		1

		Calpurnia		0		1		0		0		0		0

		Cleopatra		1		0		0		0		0		0

		mercy		1		0		1		1		1		1

		worser		1		0		1		1		1		0

CS3245 – Information Retrieval

1. Term frequency matrix
 Contains the frequency of a term in a document:

Information Retrieval 14

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Sec. 6.2

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		157		73		0		0		0		0

		Brutus		4		157		0		1		0		0

		Caesar		232		227		0		2		1		1

		Calpurnia		0		10		0		0		0		0

		Cleopatra		57		0		0		0		0		0

		mercy		2		0		3		5		5		1

		worser		2		0		1		1		1		0

CS3245 – Information Retrieval

Term frequency tf
 The term frequency tft,d of term t in document d is

defined as the number of times that t occurs in d.
 We want to use tf when computing query-document

match scores. But how?

 Relevance does not increase proportionally with raw
term frequency
 A document with 10 occurrences of the term is more

relevant than a document with 1 occurrence. But not 10
times more relevant.

Information Retrieval 15

CS3245 – Information Retrieval

Log-frequency weighting scheme
 The log frequency weight of term t in d is

e.g. 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

 Let say:
Q = Antony Cleopatra Calpurnia
D = the play Anthony and Cleopatra
Score (D, Q) = (1 + log10157) +

(1 + log1057) + 0
Information Retrieval 16

 >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

Sec. 6.2

Antony and Cleopatra

Antony 157
Brutus 4
Caesar 232

Calpurnia 0
Cleopatra 57

CS3245 – Information Retrieval

Information not considered in Jaccard
 Document Frequency
 Query: the emperor
 Document A: emperor
 Document B: the
 A > B since the is too common (i.e., of higher document

frequency) and hence less important than emperor

Information Retrieval 17

Ch. 6

CS3245 – Information Retrieval

2. Document frequency
 Rare terms are more informative than frequent terms
 Given a query: the emperor, it is more important to match

"emperor" than to match "the".

 We want…
 Lower weights for more common words like the, increase,

and line, and
 Higher weights for rarer ones like emperor, and

arachnocentric.

 This can be captured by the inverse document
frequency (idf) weighting scheme.

Information Retrieval 18

Sec. 6.2.1

CS3245 – Information Retrieval

idf weighting scheme
 dft is the document frequency of t: the number of

documents that contain t
 dft is an inverse measure of the informativeness of t
 dft ≤ N where N is the collection size.

 We define the idf (inverse document frequency) of t
by

 We use log (N/dft) instead of 1/dft to keep the value non-
negative and dampen the effect of idf.

Information Retrieval 19

)/df(log idf 10 tt N=

Sec. 6.2.1

CS3245 – Information Retrieval

Example: suppose N = 1 million
term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

Information Retrieval 20

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=

CS3245 – Information Retrieval

tf-idf weighting

 The tf-idf weight of a term is the product of its tf
weight and its idf weight.

 Best known weighting scheme IR
 Note: the "-" in tf-idf is a hyphen, not a minus sign!
 Alternative names: tf.idf, tf x idf

 Increases with the number of occurrences within a
document

 Increases with the rarity of the term in the collection
Information Retrieval 21

)df/(log)tflog1(w 10,, tdt N
dt

×+=

Sec. 6.2.2

CS3245 – Information Retrieval

Final ranking of documents for a query

Information Retrieval 22

Sec. 6.2.2

CS3245 – Information Retrieval

Vector and vector space

Information Retrieval 23

Sec. 6.3

 A 3-dimensional vector space
with a vector P = (1, 1, 1)

CS3245 – Information Retrieval

tf-idf matrix

Information Retrieval 24

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is a vector
in a vector space.

Sec. 6.3

Shakepeare

				Antony and Cleopatra		Julius Caesar		The Tempest		Hamlet		Othello		Macbeth

		Antony		5.25		3.18		0		0		0		0.35

		Brutus		1.21		6.1		0		1		0		0

		Caesar		8.59		2.54		0		1.51		0.25		0

		Calpurnia		0		1.54		0		0		0		0

		Cleopatra		2.85		0		0		0		0		0

		mercy		1.51		0		1.9		0.12		5.25		0.88

		worser		1.37		0		0.11		4.15		0.25		1.95

CS3245 – Information Retrieval

Documents as vectors
 So we have a |V |-dimensional vector space
 Terms are axes of the space
 Documents are points or vectors in this space

 High-dimensional: tens of thousands of dimensions;
each dictionary term is a dimension

 These are very sparse vectors - most entries are zero.

Information Retrieval 25

Sec. 6.3

CS3245 – Information Retrieval

Queries as vectors
 Key idea 1: Do the same for queries: represent them

as vectors in the space; they are "mini-documents"

 Key idea 2: Rank documents according to their
proximity to the query in this space

Information Retrieval 26

Sec. 6.3

Q: Antony mercy

Antony 2.45
Brutus 0
Caesar 0

Calpurnia 0
Cleopatra 0

mercy 1.21
worser 0

Antony and Cleopatra Julius Caesar

Antony 5.25 3.18
Brutus 1.21 6.1
Caesar 8.59 2.54

Calpurnia 0 1.54
Cleopatra 2.85 0

mercy 1.51 0

worser 1.37 0

Shakepeare

				Q: Antony mercy

		Antony		2.45

		Brutus		0

		Caesar		0

		Calpurnia		0

		Cleopatra		0

		mercy		1.21

		worser		0

CS3245 – Information Retrieval

Formalizing vector space proximity
 First cut: distance between two points
 (= distance between the end points of the two vectors)

 Euclidean distance?

 Euclidean distance is a bad idea …
because Euclidean distance is large for vectors of
different lengths.

Information Retrieval 27

Sec. 6.3

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Information Retrieval 28

Sec. 6.3

Why distance is a bad idea
 The Euclidean distance between �⃗�𝑞 and 𝑑𝑑2 is large even

though the distribution of terms in the query �⃗�𝑞 and the
distribution of terms in the document 𝑑𝑑2 are very similar.

 Key idea: Rank documents according to the angle
with query instead.

CS3245 – Information Retrieval

From angles to cosines
 The following two notions are equivalent.
 Rank documents in decreasing order of the angle between

query and document
 Rank documents in increasing order of cosine(query,

document)

 Cosine is a monotonically decreasing function for the
interval [0o, 180o]

Information Retrieval 29

Sec. 6.3

CS3245 – Information Retrieval

cosine (query, document)

Information Retrieval 30

Sec. 6.3

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(�⃗�𝑞, 𝑑𝑑) is the cosine similarity of �⃗�𝑞 and 𝑑𝑑 … or, equivalently, the
cosine of the angle between �⃗�𝑞 and 𝑑𝑑.

CS3245 – Information Retrieval

 The vectors in the computation of cosine similarity
are in fact length normalized by dividing each of its
components by its length:

 Such normalization makes the weights comparable
across different vectors despite their original lengths.

 Effect on the two documents 𝑑𝑑 and 𝑑𝑑′ (d appended
to itself): they have identical vectors after length
normalization.

Length normalization

Information Retrieval 31

Sec. 6.3

CS3245 – Information Retrieval

Cosine for length-normalized vectors

Information Retrieval 32

 For length-normalized vectors, cosine similarity is
simply the dot product (or scalar product):

for length normalized �⃗�𝑞 and 𝑑𝑑

CS3245 – Information Retrieval

Cosine similarity illustrated

Information Retrieval 33

CS3245 – Information Retrieval

Cosine similarity example

term Doc 1 Doc 2 Q

affection 115 58 1

jealous 10 7 1

How similar are
these documents
vs the query:

affection jealous

Information Retrieval 34

Term frequencies

Sec. 6.3

Note: To simplify this example,
we do not do idf weighting and

consider only two terms.

CS3245 – Information Retrieval

Cosine similarity example

Log frequency weighting

term Doc 1 Doc 2 Q
affection 3.06 2.76 1
jealous 2.00 1.85 1

After length normalization

term Doc 1 Doc 2 Q
affection 0.84 0.83 0.71
jealous 0.55 0.56 0.71

Information Retrieval 35

cos(Doc 1, Q) ≈ 0.84×0.71 + 0.55×0.71 ≈ 0.99
cos(Doc 2, Q) ≈ 0.99

Sec. 6.3

CS3245 – Information Retrieval

Computing cosine scores

Information Retrieval 36

Sec. 6.3

This algorithm does not follow
the formula exactly. What are

the differences and why?

CS3245 – Information Retrieval

Information Retrieval 37

Sec. 6.4

CS3245 – Information Retrieval

Weighting may differ in
queries vs documents

Information Retrieval 38

A bad idea?

Sec. 6.4

 Many search engines allow for different weightings
for queries vs. documents

 SMART Notation: denote combination used with the
notation ddd.qqq, using the acronyms from the table
on the previous slide

 A very standard weighting scheme is lnc.ltc
 Document: logarithmic tf (l as first character), no idf,

cosine normalization

 Query: logarithmic tf (l in the leftmost column), idf (t in the
second column) and cosine normalization

CS3245 – Information Retrieval

Information Retrieval 39

Document: car insurance auto insurance
Query: best car insurance

Score = 0+0+0.27+0.53 = 0.8

Doc length =

Sec. 6.4

Term Document Query Prod
tf-raw tf-wt wt n’lize tf-raw tf-

wt
df idf wt n’lize

auto 1 1 1 0.52 0 0 5000 2.3 0 0 0
best 0 0 0 0 1 1 50000 1.3 1.3 0.34 0
car 1 1 1 0.52 1 1 10000 2.0 2.0 0.52 0.27
insurance 2 1.3 1.3 0.68 1 1 1000 3.0 3.0 0.78 0.53

Quick Question: what is N, the number of docs?

CS3245 – Information Retrieval

Bag of words model
 Con: Vector representation doesn’t consider the

ordering of words in a document

Moonlight bests La La Land at the Oscars and
La La Land bests Moonlight at the Oscars have the same
vectors

 In a sense, this is a step back: The positional index
was able to distinguish these two documents.
 We will look at "recovering" positional information later in

this course.

Information Retrieval 40

CS3245 – Information Retrieval

Summary and algorithm:
Vector space ranking

Information Retrieval 41

1. Represent the query as a weighted tf-idf vector
2. Represent each document as a weighted tf-idf

vector
3. Compute the cosine similarity score for the query

vector and each document vector
4. Rank documents with respect to the query by score
5. Return the top K (e.g., K = 10) to the user

CS3245 – Information Retrieval

Resources for today’s lecture
 IIR 6.2 – 6.4.3

Information Retrieval 42

Ch. 6

	Slide Number 1
	Last Time: Index Compression
	Today: Ranked Retrieval
	Problem with Boolean search:�Difficulty in query formulation
	Problem with Boolean search:�Feast or Famine with no differentiation
	Problem with Boolean search:�Feast or Famine with no differentiation
	Ranked retrieval
	Ranked retrieval
	Scoring as the basis of ranked retrieval
	Take 1: Jaccard coefficient
	Jaccard coefficient: Scoring example
	Information not considered in Jaccard
	Recap: Binary term-document incidence matrix (from Week 2)
	1. Term frequency matrix
	Term frequency tf
	Log-frequency weighting scheme
	Information not considered in Jaccard
	2. Document frequency
	idf weighting scheme
	Example: suppose N = 1 million
	tf-idf weighting
	Final ranking of documents for a query
	Vector and vector space
	tf-idf matrix
	Documents as vectors
	Queries as vectors
	Formalizing vector space proximity
	Why distance is a bad idea
	From angles to cosines
	cosine (query, document)
	Length normalization
	Cosine for length-normalized vectors
	Cosine similarity illustrated
	Cosine similarity example
	Cosine similarity example
	Computing cosine scores
	
	Weighting may differ in �queries vs documents
	
	Bag of words model
	Summary and algorithm:�Vector space ranking
	Resources for today’s lecture

