
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 8: A complete search system –
Scoring and results assembly

8
Live Q&A 
https://pollev.com/jin



CS3245 – Information Retrieval

Last Time: tf-idf weighting

Information Retrieval 2

Ch. 6

 The tf-idf weight of a term is the product of its tf 
weight and its idf weight.

 Best known weighting scheme in information 
retrieval
 One of the easy but important things you should 

remember for IR
 Increases with the number of occurrence within a 

document
 Increases with the rarity of the term in the collection



CS3245 – Information Retrieval

 Key idea 1: represent both d and q as vectors 
 Key idea 2: Rank documents according to their 

proximity (similarity) to the query in this space

cos(q, d) is the cosine similarity of q and d … or, 
equivalently, the cosine of the angle between q and d.

Last Time: Vector Space Model

Information Retrieval 3

Ch. 6



CS3245 – Information Retrieval

Computing cosine scores, redux

Information Retrieval 4

Sec. 6.3.3

Consider only the terms 
appearing in both q and d.

Normalize by the (pre-computed) 
document length only.

Dot product

Normalization



CS3245 – Information Retrieval

Today
Goal
 Speeding up and shortcutting ranking

 Incorporating additional ranking information    
   into VSM

Information Retrieval 5

Ch. 7



CS3245 – Information Retrieval

Efficient cosine ranking

Information Retrieval 6

Sec. 7.1

 Key observations
 Users only checks the top results.
 There are probably too many (relevant) documents in the 

first place.

 Given a collection of N documents and a query
 Find K (<< N) docs that are (likely to be) the "nearest" to 

the query based on cosine similarity.

 Efficient ranking
 Simplify the processing
 Possibly less accurate  / exact



CS3245 – Information Retrieval

Faster cosine: unweighted query

Information Retrieval 7

Sec. 7.1

 To simplify the computation of a single cosine, we 
can…

 Assume each query term has weight 1
 i.e., wt,q = 1 (no tf, nor idf factor; just Boolean presence)
 Before: Scores[d] += wt,d x wt,q 

 After:    Scores[d] += wt,d

 But the bigger bottleneck is to process all N 
documents in the collection…

No expensive multiplication, 
only addition



CS3245 – Information Retrieval

Information Retrieval 8

Sec. 7.1

 Full collection = N documents

 Documents that do not contain any query terms have 
zero cosine values
 Q: emperor
 Doc1: queen, Doc2: the emperor, …
 Score (Q, Doc1) = 0

 Such documents can be safely ignored…Let's call the 
remaining collection of documents J.

Let's shrink the collection…



CS3245 – Information Retrieval

Information Retrieval 9

Sec. 7.1

 What we need: Select K best out of J
 Typically, K << J
 Query: emperor
 J (i.e., docs containing emperor) = 1M, but K could be just 

100

 Sort and output top K = O(J log J + K)

 Can we do better?

Optimizing the selection process



CS3245 – Information Retrieval

Use heaps for selecting top K

Information Retrieval 10

1

.9 .3

.8.3

.1

.1

Sec. 7.1

 Heap = Binary tree in which
   each node's value > the values of its children 

 Takes O(J) operations to construct, then each of K 
"winners" read off in O(logJ) steps = O(J+K*logJ)

 For J = 1M, K = 100, this is 
about 5% of the cost 
of sorting and outputting 
(with log base 2)



CS3245 – Information Retrieval

 Primary computational bottleneck in scoring: cosine 
computation

 Can we avoid doing this computation for all docs in J?
 Yes, we need to do some pruning.

 We may get it wrong sometimes but it is ok if we are 
not missing too many.
 It is unlikely that the user really want all relevant 

documents.

Bottlenecks

Information Retrieval 11

Sec. 7.1.1

Blanks on slides, you may want to fill in



CS3245 – Information Retrieval

Generic approach

Information Retrieval 12

Sec. 7.1.1

N
J

K

A

 Find a set A of contenders, with K < |A| << |J| << N
 A does not necessarily contain the top K, but has many 

docs from among the top K
 Return the top K docs in A

 Think of A as pruning 
non-contenders

 The same approach can 
also be used for other 
(non-cosine) scoring 
functions.



CS3245 – Information Retrieval

 Basic algorithm: FastCosineScore of Fig 7.1 considers 
docs containing at least one query term (i.e., set J)

 J will be large and the computation will be slow if 
some query terms are common or there are many 
query terms…

 We can in fact ignore part of the index (i.e., postings 
lists) based on the query.

Heuristic 1: Index elimination

Information Retrieval 13

Sec. 7.1.2

Blanks on slides, you may want to fill in



CS3245 – Information Retrieval

 E.g., given a query such as catcher in the rye only 
accumulate scores from catcher and rye

 It is usually not important to match in and the 
anyway since they have low idfs.

 Benefit:
 Postings of low idf terms have many docs  these (many) 

docs get eliminated from set A of contenders
 Similar in spirit to stop word removal

1a. High-idf query terms only

Information Retrieval 14

Sec. 7.1.2



CS3245 – Information Retrieval

 Any doc with at least one query term is a candidate 
from the top K output list, but …

 For multi-term queries, only compute scores for docs 
containing several of the query terms
 Say, at least 3 out of 4 query terms
 E.g., given a query such as catcher in the rye, consider 

documents containing catcher, the and rye at the same 
time but not the ones containing only in and rye.

 Easy to implement in postings traversal

1b. Docs containing many query terms

Information Retrieval 15

Sec. 7.1.2



CS3245 – Information Retrieval

Example: Requiring 3 of 4 query terms

Information Retrieval 16

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2



CS3245 – Information Retrieval

Heuristic 2: Champion lists

Information Retrieval 17

Sec. 7.1.3

 Precompute for each dictionary term t, the r docs of 
highest weight in t's postings
 Call this the champion list for t
    (a.k.a. fancy list or top docs for t)

Antony 3 (0.5) 4 (0.2) 8 (0.7) 16 (0.6)

docID (wft,d)

Champion 
List (r = 2)

8 (0.7) 16 (0.6)



CS3245 – Information Retrieval

Heuristic 2: Champion lists

Information Retrieval 18

Sec. 7.1.3

 At query time, only compute scores for docs in the 
champion list of some query term
 Pick the K top-scoring docs from amongst these

 Note that r has to be chosen at the indexing stage
 Thus, it's possible that r < K



CS3245 – Information Retrieval

High and low lists

Information Retrieval 19

Sec. 7.1.4

 For each term, we maintain two postings lists called 
high and low
 Think of high as the champion 

Antony 3 (0.5) 4 (0.2) 8 (0.7) 16 (0.6)

docID (wft,d)

High List
8 (0.7) 16 (0.6)

Low List
3 (0.5) 4 (0.2)



CS3245 – Information Retrieval

High and low lists

Information Retrieval 20

Sec. 7.1.4

 When traversing postings on a query, only traverse 
high lists first
 If we get more than K docs, select the top K and stop
 Else proceed to get docs from the low lists

 A means for segmenting index into two tiers



CS3245 – Information Retrieval

 Generalizing high-low lists into tiers
 Break postings up into a hierarchy of lists

Most important
…
Least important

 Inverted index thus broken up into tiers of decreasing 
importance

 At query time, use only top tier unless insufficient to 
get K docs

    If so, drop to lower tiers

Tiered indexes

Information Retrieval 21

Sec. 7.2.1



CS3245 – Information Retrieval

Example tiered index

Information Retrieval 22

Sec. 7.2.1

To think about: 
What information 
would be useful to 
use to determine 
tiers?



CS3245 – Information Retrieval

Heuristic 3: Impact-ordered postings

Information Retrieval 23

Sec. 7.1.5

 We only want to compute scores for docs for which 
wft,d is high enough

 We sort each postings list by wft,d

Antony 3 (0.5) 4 (0.2) 8 (0.7) 16 (0.6)

Antony 8 (0.7) 16 (0.6) 3 (0.5) 4 (0.2)

Before 
sorting

After 
sorting

docID (wft,d)



CS3245 – Information Retrieval

3a. Early termination

Information Retrieval 24

Sec. 7.1.5

 When traversing t's postings (sorted by wft,d), stop 
early after either
 a fixed number of r docs
 wft,d drops below some threshold

 Take the union of the resulting sets of docs
 One set from the postings of each query term

 Compute only the scores for docs in this union

Antony 8 (0.7) 16 (0.6) 3 (0.5) 4 (0.2)

The score contribution 
(wft,d * wft,q) is likely to 
be too low beyond these.



CS3245 – Information Retrieval

Information Retrieval 25

Sec. 7.1.5

 Consider the postings of query terms in order of 
decreasing idf
 Query: story Caesar Antony
 Order of processing: Antony Caesar story

 Skip low-idf query terms completely (e.g., ignore 
story)  Similar to 1a

 Move on to the next query term once the score 
contribution (wft,d * wft,q) is low (e.g., <= 0.5)

3b. idf-ordered query terms

Antony 8 (0.7) 16 (0.6) 3 (0.5) 4 (0.2)
E.g., if the query term weight of Anthony is 0.9, 
skip to Caesar after checking the 3rd document.



CS3245 – Information Retrieval

Heuristic 4:
Cluster pruning – preprocessing

Information Retrieval 26

Sec. 7.1.6

 Pick 𝑁𝑁 docs at random, call these leaders
 For other docs, pre-compute nearest leader
 Docs attached to a leader are its followers

 Likely: each leader has 𝑁𝑁 followers.

   Why choose leaders at random?
 Fast 
 Leaders reflect data distribution



CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 27

1. Offline: Choose 𝑁𝑁 leaders



CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 28

2. Associate documents to leaders to form clusters



CS3245 – Information Retrieval

Cluster pruning – query processing

Information Retrieval 29

Sec. 7.1.6

 Process a query as follows:
 Given a query Q, find its nearest leader L.
 Seek K nearest docs from among L's followers (and L itself).



CS3245 – Information Retrieval

Cluster pruning visualization

Information Retrieval 30

Q

3. Online: Associate query to a leader (cluster)



CS3245 – Information Retrieval

Clustering pruning variants

Information Retrieval 31

Sec. 7.1.6

To think about: How do these parameters affect the 
retrieval results?

 Have each follower attached to b1 nearest leaders
 From query, find b2 nearest leaders and their 

followers

 b1 affects preprocessing step at indexing time
 b2 affects query processing step at run time



CS3245 – Information Retrieval

 We want top-ranking documents to be both relevant 
and authoritative
 Relevance is being modeled by cosine scores
 Quality is typically a query-independent property of a 

document

 Examples of quality signals
 Wikipedia among websites
 Articles in certain newspapers
 A paper with many citations
 Many views, retweets, favs, bookmark saves
 PageRank score

Quantitative

Incorporating Additional 
Information: Static quality scores

Information Retrieval 32

Sec. 7.1.4



CS3245 – Information Retrieval

Net score

Information Retrieval 33

Sec. 7.1.4

 Assign to each document a quality score g(d) in [0,1]
 E.g., PageRank

 Combine cosine relevance and quality
  net-score(q,d) = g(d) + cos(q, d)
 Can use some other linear combination than an equal 

weighting

 Now we seek the top K docs by net-score



CS3245 – Information Retrieval

Incorporating Additional 
Information: Query term proximity

Information Retrieval 34

Sec. 7.2.2

 Free text queries: just a set of terms typed into the 
query box – common on the web

 Users prefer docs where the query terms occur close 
to each other

 Let w be the smallest window in a document 
containing all query terms, e.g.,
 Given the query open day:

 For the document open the next day, the size of w is 4.
 For the document national day open house, the size of w is 2.



CS3245 – Information Retrieval

Query term proximity

Information Retrieval 35

Sec. 7.2.3

 Collect candidates by running one or more queries to 
the indexes, and then rank.

 e.g., NUS open day
1. Run it as a phrase query (e.g., using a positional index)
2. If < K docs contain the phrase NUS open day, run the two 

phrase queries "NUS open" and "open day"
3. If we still have < K docs, run the vector space query NUS 

open day
4. Rank matching docs by vector space scoring combining all 

information (possibly including proximity score w)



CS3245 – Information Retrieval

Incorporating Additional 
Information: Parametric and zone indexes

Documents often have multiple parts, with different 
semantics:
 Author, Title, Date of publication, etc.

These constitute the metadata about a document.
We sometimes wish to search by these metadata.
 E.g., find docs authored by T.S. Raffles in the year 1818, 

with Dutch East India Company in the title

Information Retrieval 36

Sec. 6.1



CS3245 – Information Retrieval

Fields
 Year = 1818 is an example of a field
 Also, author = T.S. Raffles
 with a finite set of possible values
 (Note: author can be treated as a zone as well.)

 Field or parametric index
 Postings for each field value
 Sometimes build range (B-tree) trees (e.g., for dates)

 Field query typically treated as conjunction
 find docs authored by T.S. Raffles in the year 1818… =
 doc must be authored by T.S. Raffles AND in the year 1818.

Information Retrieval 37

Sec. 6.1



CS3245 – Information Retrieval

Zone
 A zone is a region of the doc that can contain an 

arbitrary amount of text e.g.,
 Title
 Author
 Abstract
 References …

 Build inverted indexes on zones as well to permit 
querying
 E.g., find docs … with Dutch East India Company in the title

Information Retrieval 38

Sec. 6.1



CS3245 – Information Retrieval

Two methods for zone indexing

Information Retrieval 39

Encode zones in dictionary vs. postings.

Sec. 6.1

Alternative 1:

Alternative 2:



CS3245 – Information Retrieval

Putting it all together

Information Retrieval 40

Sec. 7.2.4

Won’t be covering these 
blue modules in this course



CS3245 – Information Retrieval

Summary
 Making the Vector Space Model more effective and 

efficient to compute
 Incorporating additional information

Resources for today
 IIR 7, 6.1

Information Retrieval 41


	Slide Number 1
	Last Time: tf-idf weighting
	Last Time: Vector Space Model
	Computing cosine scores, redux
	Today
	Efficient cosine ranking
	Faster cosine: unweighted query
	Let's shrink the collection…
	Optimizing the selection process
	Use heaps for selecting top K
	Bottlenecks
	Generic approach
	Heuristic 1: Index elimination
	1a. High-idf query terms only
	1b. Docs containing many query terms
	Example: Requiring 3 of 4 query terms
	Heuristic 2: Champion lists
	Heuristic 2: Champion lists
	High and low lists
	High and low lists
	Tiered indexes
	Example tiered index
	Heuristic 3: Impact-ordered postings
	3a. Early termination
	3b. idf-ordered query terms
	Heuristic 4:�Cluster pruning – preprocessing
	Cluster pruning visualization
	Cluster pruning visualization
	 Cluster pruning – query processing
	Cluster pruning visualization
	Clustering pruning variants
	Incorporating Additional �Information: Static quality scores
	Net score
	Incorporating Additional �Information: Query term proximity
	Query term proximity
	Incorporating Additional �Information: Parametric and zone indexes
	Fields
	Zone
	Two methods for zone indexing
	Putting it all together
	Summary

