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Install Python on Windows

▪ Download the installer from 
https://www.python.org/downloads/windows/

▪ Run the installer

▪ Follow the instructions to install Python

▪ The default installed directory should be like
C:\Python(major)(minor)

https://www.python.org/downloads/windows/


CS3245 – Information Retrieval

Install Python on Mac

▪ Most Mac machines come with Python installed: try 
typing  python3 --version

▪ If you want to manually install (possibly a different 
version), download the installer from
https://www.python.org/downloads/mac-osx/
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Install Python on Linux

▪ If you are using Ubuntu, Python is installed by 
default, try typing  python3 --version

▪ If you want to manually install (possibly a different 
version), download the source files from 
https://www.python.org/downloads/source/

▪ Unzip the file, cd to the unzipped directory, and run 
the normal “./configure → make → sudo make 
install” commands

https://www.python.org/downloads/source/
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Information Retrieval

CRASH COURSE IN PYTHON

Python
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Python Interpreter

▪ Interactive interface to Python

▪ On Windows: Start→All Programs→Python 3.7→Python 
(command line)

▪ On Linux: type python

▪ Python prompt: >>>

▪ To exit: 
▪ On Windows: Ctrl-Z + <Enter>

▪ On Linux: Ctrl-D

▪ Run python program on Linux:
% python filename.py

7
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▪ IDLE: the Python IDE

▪ On Windows: Start→All Programs→Python 3.7→IDLE 
(Python GUI)

▪ On Linux and Mac: type idle

9
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Information Retrieval

Codecademy
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Information Retrieval

For today’s exercises

1. Sign up for Codecademy now

2. Pick the Learn Python 2 course
(Note that the Python 3 course is a pro feature so we will still refer to the 
Python 2 course instead for the relevant exercises. Just try to solve those 
exercises in Python 3.)

11

3. Jump to an appropriate exercise sequence
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The Basics

▪ Numbers: integers, long integers, floating points, and 
complex numbers

▪ Strings:
▪ Single quotes: 'hello!'

▪ Double quotes: "what's your name?"

▪ Triple quotes: multi-line string
'''This is multi-line

string.

'''

▪ Immutable: once created, cannot change

▪ Concatenation:  'hi ' 'there' same as 'hi ' + 
‘there' (Be careful)

12
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▪ Variables: x = 1, y = 'NUS', x = y = z = 
'SoC'

▪ Identifier naming:
▪ 1st char: a letter of the alphabet (upper or lowercase) or an 

underscore (‘_’)

▪ The rest: letters (upper or lowercase), underscores (‘_’), or 
digits (0-9)

▪ Case-sensitive: myname != myName

▪ Reserved words:
▪ and, assert, break, class, continue, def, del, 

elif, else, except, exec, finally, for, from, 

global, if, import, in, is, lambda, not, or, 

pass, print, raise, return, try, while

13
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▪ Strongly object oriented: everything is an object, 
including numbers, string, functions

▪ Statements and semicolons:
▪ Don’t need to put (;) if you write one statement in one 

single line
i = 5

print(i)

▪ Statements in one line are separated by (;)
i = 5; print(i)

▪ Continuing a line with (\)
s = 'This is a string. \

This continues the string.'

14
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▪ Indentation:
▪ No braces { } to mark blocks of code 

▪ Leading whitespaces (spaces and tabs) are important

▪ Statements in the same block have same indentation
i = 5

print(i)

i = 5

print(i)

▪ Recommendation: consistently use a single tab or 2/4 
spaces

15

wrong

correct
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▪ Comments:
▪ Single line uses #

▪ Multi-line uses “““…”””

# this is single line comment

""" this is multiple

line comment """

16
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Operators and Expressions

▪ Operators: 
+, -, *, **, /, //, %, 

<<, >>, &, |, ^, ~, 

<, >, <=, >=, ==, !=, 

not, and, or

▪ Expression:
length = 5

breadth = 2

area = length * breadth

print 'Area is', area

print 'Perimeter is', 2 * (length + breadth)

▪ Assignment uses =, comparison uses ==

▪ Multiple assignments: x, y = 2, 'abc'

17

Pretty print:
Try: print(f”He is {5} years old”)
Works in python 3.7
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Control Flow
▪ if…elif…else statement:

number = 23

guess = int(raw_input('Enter an integer : '))

if guess == number:

print(‘Congratulations, you guessed it.’) # New block starts here

print(“(but you do not win any prizes!)”) # New block ends here

elif guess < number:

print(‘No, it is a little higher than that’) # Another block

# You can do whatever you want in a block ...

else:

print(‘No, it is a little lower than that’)

# you must have guess > number to reach here

print 'Done'

18
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▪ while statement:

number = 23

running = True

while running:

guess = int(raw_input('Enter an integer : '))

if guess == number:

print(‘Congratulations, you guessed it.’)

running = False # this causes the while loop to stop

elif guess < number:

print(‘No, it is a little higher than that.’)

else:

print(‘No, it is a little lower than that.’)

else:

print(‘The while loop is over.’)

# Do anything else you want to do here

print 'Done'

19
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▪ for statement:
for i in range(1,5):

print(i)

else:

print(‘the for loop is over’)

▪ range(1,5) generates the list [1,2,3,4]

▪ range(a,b,s) generates a list from a to b-1 with a step 
s

▪ list(range(1,10,2)) → [1,3,5,7,9]

20
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▪ break statement: 

▪ break from current loop

▪ continue statement: 

▪ skip the rest of the current iteration and continue to the 
next iteration

21
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Information Retrieval

Codecademy time!

Unit 3. PygLatin 
▪ PygLatin Part 2 (Exercises 7-11)

22
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Functions

▪ Defining a function with def:

23

Function name and parameters

Function body

Outside 
the
function

def printMax(a, b):

if a > b:

print(f”{a} is maximum”)

else:

print(f”{a} is maximum”)

printMax(3, 4) # directly give literal values

x = 5

y = 7

printMax(x, y) # give variables as arguments
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▪ Local variables: variables declared inside a function

24

>>> def func(x):

...     print(f”x is {x}”)

...     x = 2

...     print(f”Changed local x to {x}”)

...

>>> x = 50

>>> func(x)

x is 50

Changed local x to 2

>>> print(f”x is still {x}”)

x is still 50
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▪ Use global to explicitly assign a value to a variable 
declared outside the function

25

>>> def func():

...     global x

...     print(f"x is {x}”)

...     x = 2

...     print(f”Changed global x to {x}”)

...

>>> x = 50

>>> func()

x is 50

Changed global x to 2

>>> print(f”Value of x is {x}”)

Value of x is 2
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▪ Default argument value: make some parameters 
optional by providing default values

▪ Note: only those at the end of the parameter list can be 
given default value
▪ def func(a,b=5) is valid, 

def func(a=5,b) is not valid

26

>>> def say(message, times = 1):

...     print(message * times)

...

>>> say('Hello')

Hello

>>> say('World', 5)

WorldWorldWorldWorldWorld
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▪ Keyword arguments: use names instead of positions 
to specify the arguments to the function

27

>>> def func(a, b=5, c=10):

...     print(f”a is {a}, b is {b}, c is {c}”)

>>> func(3, 7)

a is 3 and b is 7 and c is 10

>>> func(25, c=24)

a is 25 and b is 5 and c is 24

>>> func(c=50, a=100)

a is 100 and b is 5 and c is 50
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▪ Use return to break out of a func and/or return a 
value

28

def maximum(x, y):

if x > y:

return x

else:

return y

print(maximum(2, 3))
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Modules

▪ Module: a file containing all functions and variables 
that you have defined

▪ The module file should end with .py

▪ Use import to import a module: 
▪ Like Java import and C++ include

▪ 3 formats:
▪ import somefile

▪ from somefile import *

▪ from somefile import className

▪ Import standard library and math library:
import sys

import math

29
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Save the module
into mymodule.py

Import mymodule 
from the same dir

▪ Make your own module:

30
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Data Structures

▪ Built-in data structures: list, tuple, dictionary

▪ List: 
▪ Specified by [item0, item1, …]

▪ Stores a sequence of items

▪ List is mutable: we can add, remove, change items

▪ List can store different types of items: 
▪ [1, 'nus', [3, 'soc'], None, True]

31
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# This is my shopping list

shoplist = ['apple', 'mango', 'carrot', 'banana']

print(f‘I have, {len(shoplist)}, items to purchase.’)

print(‘These items are:’), # Notice the comma at end of the line

for item in shoplist:

print item,

print 'I also have to buy rice.'

shoplist.append('rice')

print(f”My shopping list is now {shoplist}”)

print(f”I will sort my list now”)

shoplist.sort()

print(f”Sorted shopping list is {shoplist}”)

print(f”The first item I will buy is {shoplist[0]}”)

olditem = shoplist[0]

del shoplist[0]

print(f”I bought the {olditem}”)

print(f”My shopping list is now {shoplist}”)

32
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▪ Tuple
▪ Specified by (item0, item1, …)

▪ Like lists except they are immutable: cannot be modified

▪ Used when you can assume the collection of items will not 
change

▪ Tuple can store different types of items: 
▪ (1, 'nus', [3, 'soc'], None, True, (1, 'a'))

▪ Empty tuple: ()

▪ Tuple with one item: (1, ) not (1)

33



CS3245 – Information Retrieval

34

zoo = ('wolf', 'elephant', 'penguin')

print(f‘Number of animals in the zoo is {len(zoo)}’

new_zoo = ('monkey', 'dolphin', zoo)

print(f”Number of animals in the new zoo is {len(new_zoo)}”)

print(f‘All animals in new zoo are {new_zoo}’

print(f‘Animals brought from old zoo are {new_zoo[2]}’)

print(f‘Last animal brought from old zoo is new_zoo[2][2]’)

Output:

Number of animals in the zoo is 3

Number of animals in the new zoo is 3

All animals in new zoo are ('monkey', 'dolphin', ('wolf', 

'elephant', 'penguin'))

Animals brought from old zoo are ('wolf', 'elephant', 'penguin')

Last animal brought from old zoo is penguin
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▪ Tuples and the print statement: one of the most 
common usage of tuple, use % to format output

35

age = 22

name = 'Alex'

print(f’{name} is {age} years old’)

print(‘Why is {name} playing with that python?’)

Output:

Alex is 22 years old

Why is Alex playing with that python?
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▪ Dictionary: 
▪ hash with key/value pairs

▪ Keys must be unique

▪ Specified by: 
▪ {key0:value0, key1:value1, …}

36
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ab = { 'Alex' : 'alex@gmail.com',

'Bob' : ‘bob@yahoo.com’}

print(“Alex's email is {ab[‘Alex’]}“)

# Adding a key/value pair

ab['Cindy'] = 'cindy@gmail.com'

# Deleting a key/value pair

del ab['Alex']

print(f‘There are {len(ab)} contacts in the address-book)

for name, address in ab.items():

print(f‘Contact {name} at {address}’)

if 'Cindy' in ab: # OR ab.has_key('Cindy')

print(f“Cindy's email is {ab[‘Cindy’]}“)

Output:

Alex's email is alex@gmail.com

There are 2 contacts in the address-book

Contact Bob at bob@yahoo.com

Contact Cindy at cindy@gmail.com

Cindy's email is cindy@gmail.com
37
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▪ Sequences:
▪ Examples: list, tuple, string

▪ 2 main features of sequences:
▪ Indexing: fetch a particular item

▪ [1,'a'][1], (1,'a')[1], 'hello'[1]

▪ Slicing: retrieve a slice of the sequence
▪ 'hello'[1:4] => 'ell'

▪ Key difference:
▪ Tuples and strings are immutable

▪ Lists are mutable

38
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list = ['apple', 'mango', 'carrot', 'banana‘]

list[0]  list[1]  … 

list[-2]  list[-1] …

list[1:3]

▪ Indexing and slicing a sequence:

39

>>> a = "Singapore"

>>> a[2]

'n'

>>> a[:]

'Singapore'

>>> a[2:5]

'nga'
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▪ Sequence operators:
▪ in: boolean test whether an item is inside a sequence

1 in [2, 'a', 1] → True

'a' in 'abcd' → True

▪ +: produces a new sequence by joining two
(1, 2) + (3, 4) → (1, 2, 3, 4)

'ab' + 'cd' → 'abcd'

▪ *: produces a new sequence by repeating itself
[1, 2] * 2 → [1, 2, 1, 2]

'Hello' * 3 → 'HelloHelloHello'

40
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▪ Sequence methods:
▪ len(s): return length of the sequence s

▪ min(s) and max(s): return the min and max value in s

▪ list(s): convert a sequence to a list

41
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▪ List: + vs extend() vs append()

▪ + creates a fresh list (new memory reference)

▪ extend a list with another list

▪ append a list with another item

42

>>> a = [1,2]

>>> b = [3,4]

>>> a + b

[1, 2, 3, 4]

>>> a + b

[1, 2, 3, 4]

>>> a.append([5,6])

>>> a

[1, 2, [5, 6]]

>>> a.append(7)

>>> a

[1, 2, [5, 6], 7]

>>> b.extend([5,6])

>>> b

[3, 4, 5, 6]

A new 
list
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▪ More list methods:
▪ s.count(x): counts the occurences of an element in a 

list

▪ s.index(x): finds the first location of an element in a 
list

▪ s.remove(x): searches for and removes an element in a 
list

▪ s.sort(): sorts a list

▪ s.reverse(): reverses the order of a list

43
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▪ References: when you bind a variable and an object, 
the variable only refers to the object and does not 
represent the object itself

▪ A subtle effect to take note:

44

list1 = ['a', 'b', 'c']

list2 = list1 # list2 points to the same list object

list3 = list1[:] # list3 points to a new copy
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▪ More string methods
▪ str1.startswith(str2): check whether str1 starts 

with str2
'Hello'.startswith('He') → True

▪ str2 in str1: check whether str1 contains str2
'ell' in 'Hello' → True

▪ str1.find(str2): get the position of str2 in str1; -1 if 
not found

'Hello'.find('ell') → 1

45
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▪ String → list
▪ delimiter.join(list): join the items in list with 

delimiter
'_'.join(['a', 'b', 'c']) → 'a_b_c'

▪ str.split(delimiter): split the str with delimiter 
into a list

'a_b_c'.split('_') → ['a', 'b', 'c']

46
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▪ More dictionary methods:
▪ a[k] = x: sets a value in the dictionary

▪ a.has_key(k): tests for the presence of a keyword

▪ a.get(k, d): returns a default if a key is not found

▪ a.keys(): returns a list of keys from a dictionary

▪ a.values(): returns a list of values

47
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Typing in Python

▪ Built-in types: str, bytes, list, tuple, set, dict, int, float, 
complex, bool

▪ Dynamic typing: determines the data types of variable 
bindings automatically

var = 2

var = 'hello'

▪ Strong typing: enforces the types of objects
>>> print 'The answer is ' + 23

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' 
objects

>>> print 'The answer is ' + str(23)

The answer is 23

48
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Information Retrieval

Codecademy time!

Unit 5. A Day at the Supermarket
▪ Shopping Trip! (Exercises 10-13)

49
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Object-oriented Programming

▪ Class: a data type

▪ Object: an instance of the class

▪ Fields: variables that belong to an object or class
▪ Two types: instance variables and class variables

▪ Methods: functions that belong to a class

▪ Fields and methods are referred to as the attributes 
of that class

50
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▪ The self:

▪ The first parameter of a class method is the self (similar 
to self in C++ and this in Java)

▪ But you don’t need to specify self when calling the 
method

51
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▪ Creating a simple class:

52

class Person:

def sayHi(self):

print(‘Hi there!’)

p = Person()

print(p)

p.sayHi()

Output:

<__main__.Person instance at 

0xf6fcb18c>

Hi there!

This tells us we have 
an instance of the 
Person class in the 
__main__ module 

and its address in the 
memory

p.sayHi() is 
internally 

transformed into 
Person.sayHi(p)
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▪ The __init__ method:

▪ Is run as soon as an object is instantiated

▪ Analogous to a constructor in C++ and Java

53

class Person:

def __init__(self, name):

self.name = name

def sayHi(self):

print(f‘Hello, my name {self.name}’)

p = Person('Jack')

p.sayHi()

Output:

Hello, my name is Jack
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▪ Class and object variables:
▪ Class variable: accessed by all objects of the class

▪ Changes will be seen by all objects

▪ Object variables: owned by each individual object of the 
class 

▪ Not shared by other objects of the same class

54
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class Person:

'''Represents a person.'''

population = 0

def __init__(self, name):

'''Initializes the person's data.'''

self.name = name

print(f‘Initializing {self.name}’)

# When this person is created, he/she

# adds to the population

Person.population += 1

def __del__(self):

'''I am dying.'''

print(’{self.name} says bye.’)

Person.population -= 1

if Person.population == 0:

print(‘I am the last one.’)

else:

print(f‘There are still {Person.population} people left)

def sayHi(self):

'''Greeting by the person.'''

print(f‘Hi, my name is {self.name}.’)

def howMany(self):

'''Prints the current population.'''

if Person.population == 1:

print(‘I am the only person here.’)

else:

print(‘We have {Person.population} persons here.’)

population is a class 
variable, so is referred as 

Person.population

name is an object 
variable, so is referred 

as self.name

__del__ is called 
when the object is 

going to die

55
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alex = Person('Alex')

alex.sayHi()

alex.howMany()

bob = Person('Bob')

bob.sayHi()

bob.howMany()

alex.sayHi()

alex.howMany()

Output:

(Initializing Alex)

Hi, my name is Alex.

I am the only person here.

(Initializing Bob)

Hi, my name is Bob.

We have 2 persons here.

Hi, my name is Alex.

We have 2 persons here.

Bob says bye.

There are still 1 people left.

Alex says bye.

I am the last one. 56
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▪ Inheritance:
▪ Implement a type and subtype relationship between 

classes

▪ Reuse of code

▪ Multiple inheritance

▪ Declared by: 
class DerivedClass(Base1, Base2, …)

57
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class SchoolMember:

'''Represents any school member.'''

def __init__(self, name, age):

self.name = name

self.age = age

print(f”Initialised SchoolMember {self.name}”)

def tell(self):

'''Tell my details.'''

print(f’Name: {self.name} Age: {self.age}’ )

class Teacher(SchoolMember):

'''Represents a teacher.'''

def __init__(self, name, age, salary):

SchoolMember.__init__(self, name, age)

self.salary = salary

print(f“Initialised Teacher: {self.name}”)

def tell(self):

SchoolMember.tell(self)

print(f‘Salary: {self.salary}’)

class Student(SchoolMember):

'''Represents a student.'''

def __init__(self, name, age, marks):

SchoolMember.__init__(self, name, age)

self.marks = marks

print(f’Initialised Student: {self.name}’)

def tell(self):

SchoolMember.tell(self)

print(f’Marks: {self.marks}’)

Call base class 
__init__ 

Call base class 
method

58
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I/O

▪ Files:
▪ Create an object of the file class to use the read, 
readline, or write method

▪ Write to a file:

▪ Read from a file:

59

f = file('file.txt', 'w')

f.write(str)

f.close()

f = file('file.txt')

for line in f:

print line

f.close()

‘w’ for write
‘r’ for read

‘a’ for append
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Information Retrieval

Codecademy time!

Unit 12. File Input/Output
▪ The Devil’s in the Details 

(Exercises 5-9)

60
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▪ Pickle:

▪ Use the pickle module to store any object to a file so 
that you can get it back later intact → storing object 
persistently

▪ Another module cPickle is written in C, and is upto 1000 
times faster

61
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import cPickle as p

#import pickle as p

shoplistfile = 'shoplist.data' 

shoplist = ['apple', 'mango', 'carrot']

# Write to the file

f = file(shoplistfile, 'w')

p.dump(shoplist, f) # dump the object to a file

f.close()

del shoplist # remove the shoplist

# Read back from the storage

f = file(shoplistfile)

storedlist = p.load(f)

print storedlist

62
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Exceptions

▪ Errors are objects
▪ More specific kinds of errors are subclasses of the general 

Error class

▪ Catch errors:
try … except …

try … except … else …

try … except … else … finally …

▪ Raise errors:
raise …

63
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while True:

try:

x = int(raw_input("Please enter a number: ")) 

break 

except ValueError: 

print "That was not a valid number. Try again..."

64
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Standard Library

▪ The sys module: 

▪ Contains system specific functionality

▪ Use: import sys

▪ sys.argv: list of arguments

▪ sys.exit()

▪ sys.version, sys.version_info: Python 
version information

▪ sys.stdin, sys.stdout, sys.stderr

▪ …

65
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▪ The os module:
▪ Generic operating system functionality
▪ Important if you want to make your program platform-independent
▪ Use: import os
▪ os.sep: windows → ‘\\’, linux → ‘/’
▪ os.name: windows → ‘nt’, linux → ‘posix’
▪ os.getcwd(): get current working directory
▪ os.getenv(), os.putenv(): get and set environment 

variables
▪ os.listdir(): get names of all files in the specified directory
▪ os.remove(): delete a file
▪ os.system(): run a shell command
▪ os.linesep: windows → ‘\r\n’, linux → ‘\n’, mac →

‘\r’
▪ os.path.split(), os.path.isfile(), 
os.path.isdir(), …

66
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More Python

▪ Special methods:

▪ Used to mimic certain behavior
▪ E.g.: to use indexing x[key] for your class, you implement the 
__getitem__() method

▪ __init__(self, …): called to instantiate an object

▪ __del__(self): called just before the object is destroyed

▪ __str__(self): called when we print the object or use 
str()

▪ __lt__(self, other): called when less than (<) is used

▪ __getitem__(self, key): called when x[key] is used

▪ __len__(self): called when len() is used

67
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▪ Random numbers:
▪ Print a random number in [0,1):

import random

print random.random()

▪ randrange(a, b): chooses an integer in the range [a, 
b)

▪ uniform(a, b): chooses a floating point number in the 
range [a, b)

▪ normalvariate(mean, sdev): samples the normal 
(Gaussian) distribution

68
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▪ List comprehension: 
▪ Derive a new list from existing lists

▪ Similar to the list comprehension in Haskell

▪ Python programmers use list comprehension extensively

▪ Syntax: [expression for name in list]

69

>>> [2*i for i in [2,3,4]]

[4, 6, 8]

>>>

>>> [n * 3 for (x, n) in [('a', 1), ('b', 2), ('c', 3)]]

[3, 6, 9]

>>>
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▪ Filtered list comprehension:
▪ Use filter condition 
▪ [expression for name in list if filter]

>>> [2*i for i in [2,3,4] if i > 2]

[6, 8]

▪ More examples:
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>>> [x*y for x in [1,2,3,4] for y in [3,5,7,9]]

[3, 5, 7, 9, 6, 10, 14, 18, 9, 15, 21, 27, 12, 20, 28, 36]

>>>

>>> [(x,y) for x in [1,3,5] for y in [2,4,6] if x < y]

[(1, 2), (1, 4), (1, 6), (3, 4), (3, 6), (5, 6)]

>>> [n * 2 for n in [m + 1 for m in [3,2,4]]]

[8, 6, 10]

>>>
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Information Retrieval

Codecademy time!

▪ Unit 10. Advanced Topics in Python
▪ Iteration Nation (Exercises 1-3)

▪ List Comprehensions (Exercises 4-6)

▪ List Slicing (Exercises 7-11)
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▪ Aggregating function arguments:
▪ You can use * or ** to aggregate arguments in to a tuple 

or dictionary
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def fun(a, *args):

print(a)

print(args)

fun(1, 3, 'a', True)

Output:

1

(3, 'a', True)

def fun(a, **args):

print(a)

print(args)

fun(1, b=3, c='a', d=True)

Output:

1

{'c': 'a', 'b': 3, 'd': True}
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▪ Lambda forms:
▪ Create anonymous functions at runtime

▪ Powerful when used with filter(), map(), 
reduce()
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>>> foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]

>>>

>>> print(list(filter(lambda x: x % 3 == 0, foo)))

[18, 9, 24, 12, 27]

>>>

>>> print(list(map(lambda x: x * 2 + 10, foo)))

[14, 46, 28, 54, 44, 58, 26, 34, 64]

>>>

>>> print(list(reduce(lambda x, y: x + y, foo)))

139
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▪ The exec and eval statements:

▪ exec: execute Python statements stored in a string or file

▪ eval: evaluate valid Python expressions stored in a string
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>>> exec('a = "Hi " + "there!"; print a')

Hi there!

>>> eval('2**3')

8
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▪ The repr() and backticks (`) statement:

▪ Return a printable representation of the object
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>>> list = [1,'a',True,[33]]

>>> repr(list)

"[1, 'a', True, [33]]"

>>> `list`

"[1, 'a', True, [33]]"
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Information Retrieval

NATURAL LANGUAGE 

TOOLKIT (NLTK) 

NLTK

76



CS3245 – Information Retrieval

A Quick Look at NLTK

▪ Installing NLTK:
▪ General instructions: https://www.nltk.org/install.html

▪ On SoC Compute Cluster: 

▪ pip install --user -U nltk
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https://www.nltk.org/install.html
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▪ Installing NLTK data
▪ Enter the Python command line (e.g., by typing python3)

import nltk

nltk.download()

▪ Download the book collection.

▪ You can then load some texts of several books by using:
from nltk.book import *

▪ Try typing text1 and text2
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▪ Searching the text
▪ Show a concordance view of a word with its contexts:

text1.concordance("monstrous")

which shows contexts such as the ___ pictures and 
the ___ size

▪ Show words that appear in the similar context:
text1.similar("monstrous")

▪ Examine the contexts that shared by two or more 
words:

text2.common_contexts(["monstrous", 

"very"])
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▪ Counting vocabulary
▪ Count length of a text in terms of words and punctuations:

len(text3) → 44764

▪ Count the vocabulary size of a text:
len(set(text3)) → 2789

▪ Let’s measure the lexical richness of a text:
float(len(text3)) / len(set(text3)) →

16.050197203298673

▪ Count word occurrence:
text3.count("smote")
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▪ Create lists from text items:
[w for w in set(text1) if len(w) > 15]

[len(w) for w in text1]

[w.upper() for w in text1]

81



CS3245 – Information Retrieval

Information Retrieval

ADDITIONAL PRACTICE

Python - NLTK

82
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Practice 1 - Python

▪ Write a program to count word occurrences in a file. 
▪ Convert all words to lowercase

▪ Excludes numbers and punctuation

▪ Print the words and word counts by descending frequency

▪ Reads the file name as the only argument
% python count_words.py filename.txt

Can be (comprehensibly) done on one line!
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Practice 2 - Python

▪ The “paper, scissors, stone” game: write a program to 
play “paper, scissors, stone” with the computer
▪ User chooses how many points are required for a win

▪ User keys in one of the three selections: 
(p)aper, (s)cissors, or s(t)one

▪ Computer randomly generates one selection

84
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85

Welcome to Paper, Scissors, Stone!

How many points are required for a win? 3

Choose (p)aper, (s)cissors, or s(t)one? t

Human: stone  Computer: paper  Computer wins!

Score: Human 0   Computer 1

Choose (p)aper, (s)cissors, or s(t)one? t

Human: stone Computer: scissors  Human wins!

Score: Human 1   Computer 1

Choose (p)aper, (s)cissors, or s(t)one? p

Human: paper Computer: paper    A draw

Score: Human 1   Computer 1

Choose (p)aper, (s)cissors, or s(t)one? s

Human: scissors Computer: paper      Human wins!

Score: Human 2   Computer 1

Choose (p)aper, (s)cissors, or s(t)one? t

Human: stone  Computer: scissors   Human wins!

Final Score: Human 3   Computer 1
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Practice 3 - NLTK

▪ Write expressions for finding all words in text6 that 
meet the following conditions. The result should be in 
the form of a list of words: ['word1', 'word2', ...].

▪ Ending in ize

▪ Containing the letter z

▪ Containing the sequence of letters pt

▪ All lowercase letters except for an initial capital (i.e., 
titlecase)
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Information Retrieval

Practice 4 - NLTK

▪ Take a text in the nltk set (say text1)

▪ Make a function that prints the 5 highest frequency 
stem (using Porter’s stemmer) and the 5 highest 
frequency words in the corpus.

▪ FreqDist() may come in handy.
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