
Introduction to Information Retrieval

CS3245

Information Retrieval

Python - NLTK

(Compiled by LIN Ziheng, updated by
Abhinav Ramesh KASHYAP)

1

CS3245 – Information Retrieval

Information Retrieval

INSTALLATION

Python

2

CS3245 – Information Retrieval

Install Python on Windows

▪ Download the installer from
https://www.python.org/downloads/windows/

▪ Run the installer

▪ Follow the instructions to install Python

▪ The default installed directory should be like
C:\Python(major)(minor)

https://www.python.org/downloads/windows/

CS3245 – Information Retrieval

Install Python on Mac

▪ Most Mac machines come with Python installed: try
typing python3 --version

▪ If you want to manually install (possibly a different
version), download the installer from
https://www.python.org/downloads/mac-osx/

CS3245 – Information Retrieval

Install Python on Linux

▪ If you are using Ubuntu, Python is installed by
default, try typing python3 --version

▪ If you want to manually install (possibly a different
version), download the source files from
https://www.python.org/downloads/source/

▪ Unzip the file, cd to the unzipped directory, and run
the normal “./configure → make → sudo make
install” commands

https://www.python.org/downloads/source/

CS3245 – Information Retrieval

Information Retrieval

CRASH COURSE IN PYTHON

Python

6

CS3245 – Information Retrieval

Python Interpreter

▪ Interactive interface to Python

▪ On Windows: Start→All Programs→Python 3.7→Python
(command line)

▪ On Linux: type python

▪ Python prompt: >>>

▪ To exit:
▪ On Windows: Ctrl-Z + <Enter>

▪ On Linux: Ctrl-D

▪ Run python program on Linux:
% python filename.py

7

CS3245 – Information Retrieval

8

CS3245 – Information Retrieval

▪ IDLE: the Python IDE

▪ On Windows: Start→All Programs→Python 3.7→IDLE
(Python GUI)

▪ On Linux and Mac: type idle

9

CS3245 – Information Retrieval

Information Retrieval

Codecademy

10

CS3245 – Information Retrieval

Information Retrieval

For today’s exercises

1. Sign up for Codecademy now

2. Pick the Learn Python 2 course
(Note that the Python 3 course is a pro feature so we will still refer to the
Python 2 course instead for the relevant exercises. Just try to solve those
exercises in Python 3.)

11

3. Jump to an appropriate exercise sequence

CS3245 – Information Retrieval

The Basics

▪ Numbers: integers, long integers, floating points, and
complex numbers

▪ Strings:
▪ Single quotes: 'hello!'

▪ Double quotes: "what's your name?"

▪ Triple quotes: multi-line string
'''This is multi-line

string.

'''

▪ Immutable: once created, cannot change

▪ Concatenation: 'hi ' 'there' same as 'hi ' +
‘there' (Be careful)

12

CS3245 – Information Retrieval

▪ Variables: x = 1, y = 'NUS', x = y = z =
'SoC'

▪ Identifier naming:
▪ 1st char: a letter of the alphabet (upper or lowercase) or an

underscore (‘_’)

▪ The rest: letters (upper or lowercase), underscores (‘_’), or
digits (0-9)

▪ Case-sensitive: myname != myName

▪ Reserved words:
▪ and, assert, break, class, continue, def, del,

elif, else, except, exec, finally, for, from,

global, if, import, in, is, lambda, not, or,

pass, print, raise, return, try, while

13

CS3245 – Information Retrieval

▪ Strongly object oriented: everything is an object,
including numbers, string, functions

▪ Statements and semicolons:
▪ Don’t need to put (;) if you write one statement in one

single line
i = 5

print(i)

▪ Statements in one line are separated by (;)
i = 5; print(i)

▪ Continuing a line with (\)
s = 'This is a string. \

This continues the string.'

14

CS3245 – Information Retrieval

▪ Indentation:
▪ No braces { } to mark blocks of code

▪ Leading whitespaces (spaces and tabs) are important

▪ Statements in the same block have same indentation
i = 5

print(i)

i = 5

print(i)

▪ Recommendation: consistently use a single tab or 2/4
spaces

15

wrong

correct

CS3245 – Information Retrieval

▪ Comments:
▪ Single line uses #

▪ Multi-line uses “““…”””

this is single line comment

""" this is multiple

line comment """

16

CS3245 – Information Retrieval

Operators and Expressions

▪ Operators:
+, -, *, **, /, //, %,

<<, >>, &, |, ^, ~,

<, >, <=, >=, ==, !=,

not, and, or

▪ Expression:
length = 5

breadth = 2

area = length * breadth

print 'Area is', area

print 'Perimeter is', 2 * (length + breadth)

▪ Assignment uses =, comparison uses ==

▪ Multiple assignments: x, y = 2, 'abc'

17

Pretty print:
Try: print(f”He is {5} years old”)
Works in python 3.7

CS3245 – Information Retrieval

Control Flow
▪ if…elif…else statement:

number = 23

guess = int(raw_input('Enter an integer : '))

if guess == number:

print(‘Congratulations, you guessed it.’) # New block starts here

print(“(but you do not win any prizes!)”) # New block ends here

elif guess < number:

print(‘No, it is a little higher than that’) # Another block

You can do whatever you want in a block ...

else:

print(‘No, it is a little lower than that’)

you must have guess > number to reach here

print 'Done'

18

CS3245 – Information Retrieval

▪ while statement:

number = 23

running = True

while running:

guess = int(raw_input('Enter an integer : '))

if guess == number:

print(‘Congratulations, you guessed it.’)

running = False # this causes the while loop to stop

elif guess < number:

print(‘No, it is a little higher than that.’)

else:

print(‘No, it is a little lower than that.’)

else:

print(‘The while loop is over.’)

Do anything else you want to do here

print 'Done'

19

CS3245 – Information Retrieval

▪ for statement:
for i in range(1,5):

print(i)

else:

print(‘the for loop is over’)

▪ range(1,5) generates the list [1,2,3,4]

▪ range(a,b,s) generates a list from a to b-1 with a step
s

▪ list(range(1,10,2)) → [1,3,5,7,9]

20

CS3245 – Information Retrieval

▪ break statement:

▪ break from current loop

▪ continue statement:

▪ skip the rest of the current iteration and continue to the
next iteration

21

CS3245 – Information Retrieval

Information Retrieval

Codecademy time!

Unit 3. PygLatin
▪ PygLatin Part 2 (Exercises 7-11)

22

CS3245 – Information Retrieval

Functions

▪ Defining a function with def:

23

Function name and parameters

Function body

Outside
the
function

def printMax(a, b):

if a > b:

print(f”{a} is maximum”)

else:

print(f”{a} is maximum”)

printMax(3, 4) # directly give literal values

x = 5

y = 7

printMax(x, y) # give variables as arguments

CS3245 – Information Retrieval

▪ Local variables: variables declared inside a function

24

>>> def func(x):

... print(f”x is {x}”)

... x = 2

... print(f”Changed local x to {x}”)

...

>>> x = 50

>>> func(x)

x is 50

Changed local x to 2

>>> print(f”x is still {x}”)

x is still 50

CS3245 – Information Retrieval

▪ Use global to explicitly assign a value to a variable
declared outside the function

25

>>> def func():

... global x

... print(f"x is {x}”)

... x = 2

... print(f”Changed global x to {x}”)

...

>>> x = 50

>>> func()

x is 50

Changed global x to 2

>>> print(f”Value of x is {x}”)

Value of x is 2

CS3245 – Information Retrieval

▪ Default argument value: make some parameters
optional by providing default values

▪ Note: only those at the end of the parameter list can be
given default value
▪ def func(a,b=5) is valid,

def func(a=5,b) is not valid

26

>>> def say(message, times = 1):

... print(message * times)

...

>>> say('Hello')

Hello

>>> say('World', 5)

WorldWorldWorldWorldWorld

CS3245 – Information Retrieval

▪ Keyword arguments: use names instead of positions
to specify the arguments to the function

27

>>> def func(a, b=5, c=10):

... print(f”a is {a}, b is {b}, c is {c}”)

>>> func(3, 7)

a is 3 and b is 7 and c is 10

>>> func(25, c=24)

a is 25 and b is 5 and c is 24

>>> func(c=50, a=100)

a is 100 and b is 5 and c is 50

CS3245 – Information Retrieval

▪ Use return to break out of a func and/or return a
value

28

def maximum(x, y):

if x > y:

return x

else:

return y

print(maximum(2, 3))

CS3245 – Information Retrieval

Modules

▪ Module: a file containing all functions and variables
that you have defined

▪ The module file should end with .py

▪ Use import to import a module:
▪ Like Java import and C++ include

▪ 3 formats:
▪ import somefile

▪ from somefile import *

▪ from somefile import className

▪ Import standard library and math library:
import sys

import math

29

CS3245 – Information Retrieval

Save the module
into mymodule.py

Import mymodule
from the same dir

▪ Make your own module:

30

CS3245 – Information Retrieval

Data Structures

▪ Built-in data structures: list, tuple, dictionary

▪ List:
▪ Specified by [item0, item1, …]

▪ Stores a sequence of items

▪ List is mutable: we can add, remove, change items

▪ List can store different types of items:
▪ [1, 'nus', [3, 'soc'], None, True]

31

CS3245 – Information Retrieval

This is my shopping list

shoplist = ['apple', 'mango', 'carrot', 'banana']

print(f‘I have, {len(shoplist)}, items to purchase.’)

print(‘These items are:’), # Notice the comma at end of the line

for item in shoplist:

print item,

print 'I also have to buy rice.'

shoplist.append('rice')

print(f”My shopping list is now {shoplist}”)

print(f”I will sort my list now”)

shoplist.sort()

print(f”Sorted shopping list is {shoplist}”)

print(f”The first item I will buy is {shoplist[0]}”)

olditem = shoplist[0]

del shoplist[0]

print(f”I bought the {olditem}”)

print(f”My shopping list is now {shoplist}”)

32

CS3245 – Information Retrieval

▪ Tuple
▪ Specified by (item0, item1, …)

▪ Like lists except they are immutable: cannot be modified

▪ Used when you can assume the collection of items will not
change

▪ Tuple can store different types of items:
▪ (1, 'nus', [3, 'soc'], None, True, (1, 'a'))

▪ Empty tuple: ()

▪ Tuple with one item: (1,) not (1)

33

CS3245 – Information Retrieval

34

zoo = ('wolf', 'elephant', 'penguin')

print(f‘Number of animals in the zoo is {len(zoo)}’

new_zoo = ('monkey', 'dolphin', zoo)

print(f”Number of animals in the new zoo is {len(new_zoo)}”)

print(f‘All animals in new zoo are {new_zoo}’

print(f‘Animals brought from old zoo are {new_zoo[2]}’)

print(f‘Last animal brought from old zoo is new_zoo[2][2]’)

Output:

Number of animals in the zoo is 3

Number of animals in the new zoo is 3

All animals in new zoo are ('monkey', 'dolphin', ('wolf',

'elephant', 'penguin'))

Animals brought from old zoo are ('wolf', 'elephant', 'penguin')

Last animal brought from old zoo is penguin

CS3245 – Information Retrieval

▪ Tuples and the print statement: one of the most
common usage of tuple, use % to format output

35

age = 22

name = 'Alex'

print(f’{name} is {age} years old’)

print(‘Why is {name} playing with that python?’)

Output:

Alex is 22 years old

Why is Alex playing with that python?

CS3245 – Information Retrieval

▪ Dictionary:
▪ hash with key/value pairs

▪ Keys must be unique

▪ Specified by:
▪ {key0:value0, key1:value1, …}

36

CS3245 – Information Retrieval

ab = { 'Alex' : 'alex@gmail.com',

'Bob' : ‘bob@yahoo.com’}

print(“Alex's email is {ab[‘Alex’]}“)

Adding a key/value pair

ab['Cindy'] = 'cindy@gmail.com'

Deleting a key/value pair

del ab['Alex']

print(f‘There are {len(ab)} contacts in the address-book)

for name, address in ab.items():

print(f‘Contact {name} at {address}’)

if 'Cindy' in ab: # OR ab.has_key('Cindy')

print(f“Cindy's email is {ab[‘Cindy’]}“)

Output:

Alex's email is alex@gmail.com

There are 2 contacts in the address-book

Contact Bob at bob@yahoo.com

Contact Cindy at cindy@gmail.com

Cindy's email is cindy@gmail.com
37

CS3245 – Information Retrieval

▪ Sequences:
▪ Examples: list, tuple, string

▪ 2 main features of sequences:
▪ Indexing: fetch a particular item

▪ [1,'a'][1], (1,'a')[1], 'hello'[1]

▪ Slicing: retrieve a slice of the sequence
▪ 'hello'[1:4] => 'ell'

▪ Key difference:
▪ Tuples and strings are immutable

▪ Lists are mutable

38

CS3245 – Information Retrieval

list = ['apple', 'mango', 'carrot', 'banana‘]

list[0] list[1] …

list[-2] list[-1] …

list[1:3]

▪ Indexing and slicing a sequence:

39

>>> a = "Singapore"

>>> a[2]

'n'

>>> a[:]

'Singapore'

>>> a[2:5]

'nga'

CS3245 – Information Retrieval

▪ Sequence operators:
▪ in: boolean test whether an item is inside a sequence

1 in [2, 'a', 1] → True

'a' in 'abcd' → True

▪ +: produces a new sequence by joining two
(1, 2) + (3, 4) → (1, 2, 3, 4)

'ab' + 'cd' → 'abcd'

▪ *: produces a new sequence by repeating itself
[1, 2] * 2 → [1, 2, 1, 2]

'Hello' * 3 → 'HelloHelloHello'

40

CS3245 – Information Retrieval

▪ Sequence methods:
▪ len(s): return length of the sequence s

▪ min(s) and max(s): return the min and max value in s

▪ list(s): convert a sequence to a list

41

CS3245 – Information Retrieval

▪ List: + vs extend() vs append()

▪ + creates a fresh list (new memory reference)

▪ extend a list with another list

▪ append a list with another item

42

>>> a = [1,2]

>>> b = [3,4]

>>> a + b

[1, 2, 3, 4]

>>> a + b

[1, 2, 3, 4]

>>> a.append([5,6])

>>> a

[1, 2, [5, 6]]

>>> a.append(7)

>>> a

[1, 2, [5, 6], 7]

>>> b.extend([5,6])

>>> b

[3, 4, 5, 6]

A new
list

CS3245 – Information Retrieval

▪ More list methods:
▪ s.count(x): counts the occurences of an element in a

list

▪ s.index(x): finds the first location of an element in a
list

▪ s.remove(x): searches for and removes an element in a
list

▪ s.sort(): sorts a list

▪ s.reverse(): reverses the order of a list

43

CS3245 – Information Retrieval

▪ References: when you bind a variable and an object,
the variable only refers to the object and does not
represent the object itself

▪ A subtle effect to take note:

44

list1 = ['a', 'b', 'c']

list2 = list1 # list2 points to the same list object

list3 = list1[:] # list3 points to a new copy

CS3245 – Information Retrieval

▪ More string methods
▪ str1.startswith(str2): check whether str1 starts

with str2
'Hello'.startswith('He') → True

▪ str2 in str1: check whether str1 contains str2
'ell' in 'Hello' → True

▪ str1.find(str2): get the position of str2 in str1; -1 if
not found

'Hello'.find('ell') → 1

45

CS3245 – Information Retrieval

▪ String → list
▪ delimiter.join(list): join the items in list with

delimiter
'_'.join(['a', 'b', 'c']) → 'a_b_c'

▪ str.split(delimiter): split the str with delimiter
into a list

'a_b_c'.split('_') → ['a', 'b', 'c']

46

CS3245 – Information Retrieval

▪ More dictionary methods:
▪ a[k] = x: sets a value in the dictionary

▪ a.has_key(k): tests for the presence of a keyword

▪ a.get(k, d): returns a default if a key is not found

▪ a.keys(): returns a list of keys from a dictionary

▪ a.values(): returns a list of values

47

CS3245 – Information Retrieval

Typing in Python

▪ Built-in types: str, bytes, list, tuple, set, dict, int, float,
complex, bool

▪ Dynamic typing: determines the data types of variable
bindings automatically

var = 2

var = 'hello'

▪ Strong typing: enforces the types of objects
>>> print 'The answer is ' + 23

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int'
objects

>>> print 'The answer is ' + str(23)

The answer is 23

48

CS3245 – Information Retrieval

Information Retrieval

Codecademy time!

Unit 5. A Day at the Supermarket
▪ Shopping Trip! (Exercises 10-13)

49

CS3245 – Information Retrieval

Object-oriented Programming

▪ Class: a data type

▪ Object: an instance of the class

▪ Fields: variables that belong to an object or class
▪ Two types: instance variables and class variables

▪ Methods: functions that belong to a class

▪ Fields and methods are referred to as the attributes
of that class

50

CS3245 – Information Retrieval

▪ The self:

▪ The first parameter of a class method is the self (similar
to self in C++ and this in Java)

▪ But you don’t need to specify self when calling the
method

51

CS3245 – Information Retrieval

▪ Creating a simple class:

52

class Person:

def sayHi(self):

print(‘Hi there!’)

p = Person()

print(p)

p.sayHi()

Output:

<__main__.Person instance at

0xf6fcb18c>

Hi there!

This tells us we have
an instance of the
Person class in the
__main__ module

and its address in the
memory

p.sayHi() is
internally

transformed into
Person.sayHi(p)

CS3245 – Information Retrieval

▪ The __init__ method:

▪ Is run as soon as an object is instantiated

▪ Analogous to a constructor in C++ and Java

53

class Person:

def __init__(self, name):

self.name = name

def sayHi(self):

print(f‘Hello, my name {self.name}’)

p = Person('Jack')

p.sayHi()

Output:

Hello, my name is Jack

CS3245 – Information Retrieval

▪ Class and object variables:
▪ Class variable: accessed by all objects of the class

▪ Changes will be seen by all objects

▪ Object variables: owned by each individual object of the
class

▪ Not shared by other objects of the same class

54

CS3245 – Information Retrieval

class Person:

'''Represents a person.'''

population = 0

def __init__(self, name):

'''Initializes the person's data.'''

self.name = name

print(f‘Initializing {self.name}’)

When this person is created, he/she

adds to the population

Person.population += 1

def __del__(self):

'''I am dying.'''

print(’{self.name} says bye.’)

Person.population -= 1

if Person.population == 0:

print(‘I am the last one.’)

else:

print(f‘There are still {Person.population} people left)

def sayHi(self):

'''Greeting by the person.'''

print(f‘Hi, my name is {self.name}.’)

def howMany(self):

'''Prints the current population.'''

if Person.population == 1:

print(‘I am the only person here.’)

else:

print(‘We have {Person.population} persons here.’)

population is a class
variable, so is referred as

Person.population

name is an object
variable, so is referred

as self.name

__del__ is called
when the object is

going to die

55

CS3245 – Information Retrieval

alex = Person('Alex')

alex.sayHi()

alex.howMany()

bob = Person('Bob')

bob.sayHi()

bob.howMany()

alex.sayHi()

alex.howMany()

Output:

(Initializing Alex)

Hi, my name is Alex.

I am the only person here.

(Initializing Bob)

Hi, my name is Bob.

We have 2 persons here.

Hi, my name is Alex.

We have 2 persons here.

Bob says bye.

There are still 1 people left.

Alex says bye.

I am the last one. 56

CS3245 – Information Retrieval

▪ Inheritance:
▪ Implement a type and subtype relationship between

classes

▪ Reuse of code

▪ Multiple inheritance

▪ Declared by:
class DerivedClass(Base1, Base2, …)

57

CS3245 – Information Retrieval

class SchoolMember:

'''Represents any school member.'''

def __init__(self, name, age):

self.name = name

self.age = age

print(f”Initialised SchoolMember {self.name}”)

def tell(self):

'''Tell my details.'''

print(f’Name: {self.name} Age: {self.age}’)

class Teacher(SchoolMember):

'''Represents a teacher.'''

def __init__(self, name, age, salary):

SchoolMember.__init__(self, name, age)

self.salary = salary

print(f“Initialised Teacher: {self.name}”)

def tell(self):

SchoolMember.tell(self)

print(f‘Salary: {self.salary}’)

class Student(SchoolMember):

'''Represents a student.'''

def __init__(self, name, age, marks):

SchoolMember.__init__(self, name, age)

self.marks = marks

print(f’Initialised Student: {self.name}’)

def tell(self):

SchoolMember.tell(self)

print(f’Marks: {self.marks}’)

Call base class
__init__

Call base class
method

58

CS3245 – Information Retrieval

I/O

▪ Files:
▪ Create an object of the file class to use the read,
readline, or write method

▪ Write to a file:

▪ Read from a file:

59

f = file('file.txt', 'w')

f.write(str)

f.close()

f = file('file.txt')

for line in f:

print line

f.close()

‘w’ for write
‘r’ for read

‘a’ for append

CS3245 – Information Retrieval

Information Retrieval

Codecademy time!

Unit 12. File Input/Output
▪ The Devil’s in the Details

(Exercises 5-9)

60

CS3245 – Information Retrieval

▪ Pickle:

▪ Use the pickle module to store any object to a file so
that you can get it back later intact → storing object
persistently

▪ Another module cPickle is written in C, and is upto 1000
times faster

61

CS3245 – Information Retrieval

import cPickle as p

#import pickle as p

shoplistfile = 'shoplist.data'

shoplist = ['apple', 'mango', 'carrot']

Write to the file

f = file(shoplistfile, 'w')

p.dump(shoplist, f) # dump the object to a file

f.close()

del shoplist # remove the shoplist

Read back from the storage

f = file(shoplistfile)

storedlist = p.load(f)

print storedlist

62

CS3245 – Information Retrieval

Exceptions

▪ Errors are objects
▪ More specific kinds of errors are subclasses of the general

Error class

▪ Catch errors:
try … except …

try … except … else …

try … except … else … finally …

▪ Raise errors:
raise …

63

CS3245 – Information Retrieval

while True:

try:

x = int(raw_input("Please enter a number: "))

break

except ValueError:

print "That was not a valid number. Try again..."

64

CS3245 – Information Retrieval

Standard Library

▪ The sys module:

▪ Contains system specific functionality

▪ Use: import sys

▪ sys.argv: list of arguments

▪ sys.exit()

▪ sys.version, sys.version_info: Python
version information

▪ sys.stdin, sys.stdout, sys.stderr

▪ …

65

CS3245 – Information Retrieval

▪ The os module:
▪ Generic operating system functionality
▪ Important if you want to make your program platform-independent
▪ Use: import os
▪ os.sep: windows → ‘\\’, linux → ‘/’
▪ os.name: windows → ‘nt’, linux → ‘posix’
▪ os.getcwd(): get current working directory
▪ os.getenv(), os.putenv(): get and set environment

variables
▪ os.listdir(): get names of all files in the specified directory
▪ os.remove(): delete a file
▪ os.system(): run a shell command
▪ os.linesep: windows → ‘\r\n’, linux → ‘\n’, mac →

‘\r’
▪ os.path.split(), os.path.isfile(),
os.path.isdir(), …

66

CS3245 – Information Retrieval

More Python

▪ Special methods:

▪ Used to mimic certain behavior
▪ E.g.: to use indexing x[key] for your class, you implement the
__getitem__() method

▪ __init__(self, …): called to instantiate an object

▪ __del__(self): called just before the object is destroyed

▪ __str__(self): called when we print the object or use
str()

▪ __lt__(self, other): called when less than (<) is used

▪ __getitem__(self, key): called when x[key] is used

▪ __len__(self): called when len() is used

67

CS3245 – Information Retrieval

▪ Random numbers:
▪ Print a random number in [0,1):

import random

print random.random()

▪ randrange(a, b): chooses an integer in the range [a,
b)

▪ uniform(a, b): chooses a floating point number in the
range [a, b)

▪ normalvariate(mean, sdev): samples the normal
(Gaussian) distribution

68

CS3245 – Information Retrieval

▪ List comprehension:
▪ Derive a new list from existing lists

▪ Similar to the list comprehension in Haskell

▪ Python programmers use list comprehension extensively

▪ Syntax: [expression for name in list]

69

>>> [2*i for i in [2,3,4]]

[4, 6, 8]

>>>

>>> [n * 3 for (x, n) in [('a', 1), ('b', 2), ('c', 3)]]

[3, 6, 9]

>>>

CS3245 – Information Retrieval

▪ Filtered list comprehension:
▪ Use filter condition
▪ [expression for name in list if filter]

>>> [2*i for i in [2,3,4] if i > 2]

[6, 8]

▪ More examples:

70

>>> [x*y for x in [1,2,3,4] for y in [3,5,7,9]]

[3, 5, 7, 9, 6, 10, 14, 18, 9, 15, 21, 27, 12, 20, 28, 36]

>>>

>>> [(x,y) for x in [1,3,5] for y in [2,4,6] if x < y]

[(1, 2), (1, 4), (1, 6), (3, 4), (3, 6), (5, 6)]

>>> [n * 2 for n in [m + 1 for m in [3,2,4]]]

[8, 6, 10]

>>>

CS3245 – Information Retrieval

Information Retrieval

Codecademy time!

▪ Unit 10. Advanced Topics in Python
▪ Iteration Nation (Exercises 1-3)

▪ List Comprehensions (Exercises 4-6)

▪ List Slicing (Exercises 7-11)

71

CS3245 – Information Retrieval

▪ Aggregating function arguments:
▪ You can use * or ** to aggregate arguments in to a tuple

or dictionary

72

def fun(a, *args):

print(a)

print(args)

fun(1, 3, 'a', True)

Output:

1

(3, 'a', True)

def fun(a, **args):

print(a)

print(args)

fun(1, b=3, c='a', d=True)

Output:

1

{'c': 'a', 'b': 3, 'd': True}

CS3245 – Information Retrieval

▪ Lambda forms:
▪ Create anonymous functions at runtime

▪ Powerful when used with filter(), map(),
reduce()

73

>>> foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]

>>>

>>> print(list(filter(lambda x: x % 3 == 0, foo)))

[18, 9, 24, 12, 27]

>>>

>>> print(list(map(lambda x: x * 2 + 10, foo)))

[14, 46, 28, 54, 44, 58, 26, 34, 64]

>>>

>>> print(list(reduce(lambda x, y: x + y, foo)))

139

CS3245 – Information Retrieval

▪ The exec and eval statements:

▪ exec: execute Python statements stored in a string or file

▪ eval: evaluate valid Python expressions stored in a string

74

>>> exec('a = "Hi " + "there!"; print a')

Hi there!

>>> eval('2**3')

8

CS3245 – Information Retrieval

▪ The repr() and backticks (`) statement:

▪ Return a printable representation of the object

75

>>> list = [1,'a',True,[33]]

>>> repr(list)

"[1, 'a', True, [33]]"

>>> `list`

"[1, 'a', True, [33]]"

CS3245 – Information Retrieval

Information Retrieval

NATURAL LANGUAGE

TOOLKIT (NLTK)

NLTK

76

CS3245 – Information Retrieval

A Quick Look at NLTK

▪ Installing NLTK:
▪ General instructions: https://www.nltk.org/install.html

▪ On SoC Compute Cluster:

▪ pip install --user -U nltk

77

https://www.nltk.org/install.html

CS3245 – Information Retrieval

▪ Installing NLTK data
▪ Enter the Python command line (e.g., by typing python3)

import nltk

nltk.download()

▪ Download the book collection.

▪ You can then load some texts of several books by using:
from nltk.book import *

▪ Try typing text1 and text2

78

CS3245 – Information Retrieval

▪ Searching the text
▪ Show a concordance view of a word with its contexts:

text1.concordance("monstrous")

which shows contexts such as the ___ pictures and
the ___ size

▪ Show words that appear in the similar context:
text1.similar("monstrous")

▪ Examine the contexts that shared by two or more
words:

text2.common_contexts(["monstrous",

"very"])

79

CS3245 – Information Retrieval

▪ Counting vocabulary
▪ Count length of a text in terms of words and punctuations:

len(text3) → 44764

▪ Count the vocabulary size of a text:
len(set(text3)) → 2789

▪ Let’s measure the lexical richness of a text:
float(len(text3)) / len(set(text3)) →

16.050197203298673

▪ Count word occurrence:
text3.count("smote")

80

CS3245 – Information Retrieval

▪ Create lists from text items:
[w for w in set(text1) if len(w) > 15]

[len(w) for w in text1]

[w.upper() for w in text1]

81

CS3245 – Information Retrieval

Information Retrieval

ADDITIONAL PRACTICE

Python - NLTK

82

CS3245 – Information Retrieval

Practice 1 - Python

▪ Write a program to count word occurrences in a file.
▪ Convert all words to lowercase

▪ Excludes numbers and punctuation

▪ Print the words and word counts by descending frequency

▪ Reads the file name as the only argument
% python count_words.py filename.txt

Can be (comprehensibly) done on one line!

83

CS3245 – Information Retrieval

Practice 2 - Python

▪ The “paper, scissors, stone” game: write a program to
play “paper, scissors, stone” with the computer
▪ User chooses how many points are required for a win

▪ User keys in one of the three selections:
(p)aper, (s)cissors, or s(t)one

▪ Computer randomly generates one selection

84

CS3245 – Information Retrieval

85

Welcome to Paper, Scissors, Stone!

How many points are required for a win? 3

Choose (p)aper, (s)cissors, or s(t)one? t

Human: stone Computer: paper Computer wins!

Score: Human 0 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? t

Human: stone Computer: scissors Human wins!

Score: Human 1 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? p

Human: paper Computer: paper A draw

Score: Human 1 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? s

Human: scissors Computer: paper Human wins!

Score: Human 2 Computer 1

Choose (p)aper, (s)cissors, or s(t)one? t

Human: stone Computer: scissors Human wins!

Final Score: Human 3 Computer 1

CS3245 – Information Retrieval

Practice 3 - NLTK

▪ Write expressions for finding all words in text6 that
meet the following conditions. The result should be in
the form of a list of words: ['word1', 'word2', ...].

▪ Ending in ize

▪ Containing the letter z

▪ Containing the sequence of letters pt

▪ All lowercase letters except for an initial capital (i.e.,
titlecase)

86

CS3245 – Information Retrieval

Information Retrieval

Practice 4 - NLTK

▪ Take a text in the nltk set (say text1)

▪ Make a function that prints the 5 highest frequency
stem (using Porter’s stemmer) and the 5 highest
frequency words in the corpus.

▪ FreqDist() may come in handy.

87

	Slide 1
	Slide 2: INSTALLATION
	Slide 3: Install Python on Windows
	Slide 4: Install Python on Mac
	Slide 5: Install Python on Linux
	Slide 6: CRASH COURSE IN PYTHON
	Slide 7: Python Interpreter
	Slide 8
	Slide 9
	Slide 10: Codecademy
	Slide 11: For today’s exercises
	Slide 12: The Basics
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Operators and Expressions
	Slide 18: Control Flow
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Codecademy time!
	Slide 23: Functions
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Modules
	Slide 30
	Slide 31: Data Structures
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Typing in Python
	Slide 49: Codecademy time!
	Slide 50: Object-oriented Programming
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: I/O
	Slide 60: Codecademy time!
	Slide 61
	Slide 62
	Slide 63: Exceptions
	Slide 64
	Slide 65: Standard Library
	Slide 66
	Slide 67: More Python
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Codecademy time!
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Natural Language Toolkit (NLTK)
	Slide 77: A Quick Look at NLTK
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: ADDITIONAL PRACTICE
	Slide 83: Practice 1 - Python
	Slide 84: Practice 2 - Python
	Slide 85
	Slide 86: Practice 3 - NLTK
	Slide 87: Practice 4 - NLTK

