Leow Wee Kheng
CS3249 User Interface Development

Multithreading

CS3249 Multithreading

S } Single Player

} Battlenet (D

2 } Options

| } Credits

- i Quit

™ T 12416374

My processor
has 4 cores!
o frTE T 8 Can it run faster!?

i

CS3249 Multithreading

Process

® A process is a running program managed by OS.

® A process consists of
executable code in memory
static and dynamic data
execution context
® program counter
® contents of registers
e stack pointer
® memory management information,
® etc.

CS3249 Multithreading

® Memory protection
A process has it own address space or virtual memory space.
Cannot access address spaces of other processes.
OS maps virtual memory to physical memory.

® Multiprogramming or multitasking
A process is given a fixed time to run.

When time is up, OS suspends the process,
and switches context to another waiting process.

® Processes are heavy-weight
Context switching is costly.

CS3249 Multithreading

-
Multithreading

® Thread
A light-weight sequence of a running program.
All threads of a process use the same address space.
Context switching is cheaper.

® Multithreading
Run multiple threads at the same time.
Different threads can run in different processors.
Some programming languages support multithreading

e Ada, Java
In Unix/Linux, use pthread to implement multithreading.

CS3249 Multithreading

Multithreading in Qt
® Qt application can run in multiple threads.
All window operations must run in the main thread.

Non-window operations can run in secondary threads.

® Qt has a QThread class for easy creation of threads.

CS3249 Multithreading

Thread Creation

// Thread.h

/ Inherits QThread
class Thread: public QThread

{
Q_OBJECT

public:
Thread();

void stop(); Redefines QThread: : run()
protected: /////////

void run();

private: ////////

volatile bool stopped;
13

volatile tells compiler not to
optimise; variable is accessed
from other threads.

CS3249 Multithreading

-
// Thread.cpp

Thread: :Thread()

{ e
stopped = false; — | Initialise
)

{ K . .
: eep running until stopped
while (stoppec) - IS seﬁ to trueg. "

stopped = false; —

cout << "\n"; Reset
}
void Thread::stop()~\\\\\\\\\
{ Someone will call it to set
} stopped = true; stopped to true.

CS3249 Multithreading

® Use dialog to illustrate thread creation and stopping.

Thread test

click start to start thread Start ||,_ Quit J

click stop to stop thread | | Step | | Quit

CS3249 Multithreading

10

R
// ThreadDialog.h

class ThreadDialog : public QDialog

{
Q_OBJECT

public:
ThreadDialog(QWidget *parent = 0);

protected:
void closeEvent(QCloseEvent *event);

private slots:
void startOrStopThread();

private:
Thread thread;
QPushButton *threadButton;
QPushButton *quitButton;

+;

CS3249 Multithreading

// ThreadDialog.cpp

ThreadDialog: :ThreadDialog(QWidget *parent):
QDialog(parent)
{

// Create widgets.

threadButton = new QPushButton(tr(”Start”));
connect(threadButton, SIGNAL(clicked()),
this, SLOT(startOrStopThread()));

quitButton = new QPushButton(tr("Quit”));

quitButton->setDefault(true);

connect(quitButton, SIGNAL(clicked()),
this, SLOT(close()));

CS3249 Multithreading

12

-
// Layout widgets.

QHBoxLayout *layout = new QHBoxLayout;
layout->addWidget (threadButton);
layout->addWidget (quitButton);
setlLayout(layout);
setWindowTitle(tr("Thread test”));

void ThreadDialog: :closeEvent(QCloseEvent *event)

{
thread.stop(); // Stop the thread.

thread.wait(); // Wait for thread to finish.

event->accept();

CS3249 Multithreading

13

void ThreadDialog: :startOrStopThread()

{
if (thread.isRunning())

{
thread.stop();
threadButton->setText(tr("Start"));
}
else
{
thread.start();
threadButton->setText(tr("Stop"));
)

® isRunning() and start() are inherited from QThread.

CS3249 Multithreading

14

Staying Responsive

® One way Is to dispatch events regularly.
long-operation()

{
for each iteration
{
do work of one iteration;
gApp—>processEvents(); // dispatch events
3
3

This method is impossible if
e you don't have source code of long-operation, or
e you don't want to change the source code.

® Alternative: run long operation in another thread.

CS3249 Multithreading

15

-
Example: Volume Image Viewer

@ 3 D I m ag e IS |arg e : & ™ Volume Viewer - fhome/leowwk/project/medical images/brain 1/dicom/12010615/51270000

takes a while to load. |~ " #EO @@ cn L

® Want to show progress
while loading.

(256, 256, 192) (L:45, W:90)

CS3249 Multithreading 16

// program fragment

void VolumeViewer: :loadImage(const QString &dirName)

{
VTKDICOMReader *reader = VTKDICOMReader: :New() ;
char xdir = dirName.toAscii().data();
reader->SetDirectoryName(dir);
reader->Update();

// display image ...

CS3249 Multithreading

17

// Method 1: use wait cursor

void VolumeViewer: :loadImage(const QString &dirName)

{
VTKDICOMReader *reader = VTKDICOMReader: :New() ;

char *dir = dirName.toAscii().data();
reader->SetDirectoryName(dir);

QApplication: :setOverrideCursor(Qt: :WaitCursor);
reader->Update();
QApplication: :restoreOverrideCursor();

// display image ...

CS3249 Multithreading

18

M@ Volume Viewer - /home/leowwk/project/medical images/brain 1/dicom/12010615/51270000

A==

(256, 256, 192) (L:45, W:90)

CS3249 Multithreading

-
// Method 2: Multithreading

class ReadThread: public QThread

{
Q_OBJECT

public:
ReadThread(vtkDICOMImageReader *rd);
bool 1sDone();

protected:
void run();

private:
volatile bool done;
vtkDICOMImageReader *reader;

1

CS3249 Multithreading

20

ReadThread: :ReadThread(vtkDICOMImageReader *rd)
{

reader = rd; // Keep it for run function.
done = false; // Init.

bool ReadThread: :isDone()
{

}

return done;

void ReadThread: :run()

{
reader->Update(); // Read image.

done = true;

CS3249 Multithreading

21

void VolumeViewer: :loadImage(const QString &dirName)
{
VTKDICOMReader *reader = VTKDICOMReader: :New() ;
char *dir = dirName.toAscii().data();
reader->SetDirectoryName(dir);

QProgressDialog progress(
QString("Reading, please wait..."),
QString("Close"”), 0, 0);

progress.show();

gApp->processEvents(); // Optional

ReadThread thread(rd);

thread.start();

while(!thread.isDone())
gApp->processEvents();

thread.quit(); // Stop thread’'s event loop.

progress.hide();

// display image ...

CS3249 Multithreading

M@ Volume Viewer - /home/leowwk/project/medical images/brain 1/dicom/12010615/51270000

A==

M5 volumeviewer

Reading, please wait...

| Close |

(256, 256, 192) (L:45, W:90)

CS3249 Multithreading 23

® In general, can allow certain interactions in main thread
Instead of just displaying progress dialog.

® Caution:
Operations in different threads must not conflict.

e Example: While doing long calculation on data,
must disable GUI's read, edit functions.

openFileAction->setEnabled(false);

If different threads refer to same data (shared data),
must synchronise threads.

e Otherwise, may get corrupted data or unstable execution.

CS3249 Multithreading 24

Thread Synchronisation

® Producer-consumer problem:
Producer and consumer share common buffer.
Producer adds to front of buffer until it is full. —
Consumer removes from back of buffer until it is | empty.

l ,
T T

back front

Increment pointer before read / write data.

CS3249 Multithreading 25

Empty buffer
back front
Full buffer
1 2 3 4 9
back front
10 | 11 | 12 | 13 9
front back

CS3249

Multithreading

26

% Buffer test

start producer

Program Structure

control

start consumer |

Producer

start /
stop

write

CS3249

-

Buffer

¢

start /
stop

read

Multithreading

Cconsumer

27

// Buffer.h
class Buffer
{
friend class Producer;
friend class Consumer;
public:
Buffer() {front = back = 0;} // Init to empty buffer.
protected:
enum {size = 10};
int datalsize];
int front; // Points to front of buffer.
int back; // Points to back of buffer.
13

CS3249 Multithreading

28

]
// Producer.h

class Producer: public QThread

{
Q_OBJECT
public:
Producer (Buffer *b);
void stop();
protected:
void run();
private:
Buffer *buffer; // Points to shared buffer.
volatile bool stopped;
s

CS3249 Multithreading

29

// Producer.cpp

Producer: :Producer (Buffer =*b)

{
buffer = b; // Keeps pointer to shared buffer.
stopped = false;

void Producer: :stop()

{
b

stopped = true;

CS3249 Multithreading

30

void Producer: :run()

{

static int data = 9;

while (!stopped)
{
if (buffer->front != buffer->back - 1 and
' (buffer->front == buffer->size - 1 and
buffer->back == 0)) // Not full

++(buffer->front); // Increment front.
if (buffer->front == buffer->size)
buffer->front = @; // Wrap around.

msleep(500); // Simulate put to sleep by OS.

CS3249 Multithreading

31

++data;

// Add data to buffer.
buffer->datalbuffer->front] = data;
cout << "p." << data << " " << flush;

}

stopped = false;

CS3249 Multithreading

32

// Consumer.h

class Consumer: public QThread

{
Q_OBJECT
public:
Consumer (Buffer *b);
void stop();
protected:
void run();
private:
Buffer *buffer; // Points to shared buffer.
volatile bool stopped;
s

CS3249 Multithreading

33

// Consumer.cpp

Consumer: :Consumer (Buffer *b)

{
buffer = b; // Keeps pointer to shared buffer.
stopped = false;

void Consumer: :stop()

{
b

stopped = true;

CS3249 Multithreading

34

void Consumer: :run()

{
while (!stopped)
{
if (buffer->back != buffer->front) // Not empty.
{
++(buffer->back); // Increment back.
if (buffer->back == buffer->size)
buffer->back = @; // Wrap around.
msleep(100); // Simulate put to sleep by OS.
// Get data.
int data = buffer->datalbuffer->back];
cout << "c."” << data << " " << flush;
J
3
stopped = false;
3

CS3249 Multithreading

35

// main.cpp

int main(int argc, char *x*args)

{
QApplication app(argc, args);
Buffer xbuffer = new Buffer;
Producer *producer = new Producer(buffer);
Consumer *consumer = new Consumer (buffer);
Control *control = new Control(producer, consumer);
control->show();
return app.exec();

}

CS3249 Multithreading

36

® Buffer overrun can happen.
Example: Empty buffer with previously read data (grey).

P

back front

Producer increments pointer,
then it is put to sleep by OS before writing data to buffer.

P

back front
Consumer sees non-empty buffer.

CS3249 Multithreading

37

Consumer increments pointer and reads 6 (garbage).

P

back front

Producer wakes up and writes new data 11.

11

b

back front

Consumers sees empty buffer, never reads 11.

CS3249 Multithreading

38

Producer increments pointer, writes 12.

11 | 12

b

back front

Consumer increments pointer, reads 12, misses 11.

11 | 12

T

back front

CS3249 Multithreading

® If producer always sleeps after incrementing pointer...
Example: Empty buffer with previously read data (grey).

P

back front

Producer increments pointer,
then it is put to sleep by OS before writing data to buffer.

P

back front
Consumer sees non-empty buffer.

CS3249 Multithreading

40

Consumer increments pointer and reads 6 (garbage).

P

back front

Producer wakes up and writes new data 11.

11

b

back front

CS3249 Multithreading

Producer increments pointer, then goes to sleep.

11

b

back front

Consumer increments pointer, reads 7 (garbage).

11

Pt

back front

CS3249 Multithreading

® Unsafe execution

leowwk-~/course/cs3249/examples/buffer1$% bufferl-unsafe-p500-c250
p.1 p.2 p.3 p.4p.5p.6c.1c.2p.7c.3 c.4p.8c.5c.6p.9c.7c.8p.10c.9c.1
0p.11 c.11 c.2 p.12 ¢.3 p.13 c.4 p.14 ¢c.5 p.15 c.6 p.16 Cc.7 p.17 c.8 p.18 Cc.9 p

27 .18 p.28 c.19 p.29 c.20

p.20 |}

.19 c.10 p.X0 c.11 p.21 c.12 p.22 c.13 p.23 c.14 p.X4 c.15 p.25 c.16 p.26 c.17 1

buffer
overrun

\

consumer sees
empty buffer

before producer

writes new data

consumer reads

garbage before

producer writes
new data

Consumer sleeps less...

leowwk-~/course/cs3249/examples/buffer1$ bufferl-unsafe-p500-c100
.3 c.4 p.6 c.5 c.b c.1072693248 p.7 c.0 p.8 c.0 p.9
p.12 ¢c.3 p.13 c.4 p.14 c.5 p.15 c.6 p.16 c.7 p.17
.11 p.21 c.12 p.22 c.13 p.23 c.14 p.24 c.15 p.25 c.

p.1 p.2 p.3 p.4 p.5c.1 c.2
c.-8923160 p.10 c.1 p.11 c.
c.8 p.18 c.9 p.19 c.10 p.20
16 p.26 c.17 p.27 c.18 p.28

CS3249

C

2
C
C

.19 p.29 |}

Multithreading

43

® Qt provides QMutex to protect critical region.

mutex =

mutual exclusion

If a thread tries to

lock a locked mutex,

It Is put to sleep

until mutex is unlocked.

CS3249

Thread 1 Mutex Thread 2
| | |
lock | lock
- — — - — — — — — :‘ lock
-l
block
do work
sleep
<l unlock | unlock
- unlock
..‘. _________
<] [0cK 1
--------- -
wake
T T T
Multithreading

44

// Buffer.h
class Buffer
{
friend class Producer;
friend class Consumer;
public:
Buffer() {front = back = 0;} // Init to empty buffer.
protected:
enum {size = 10};
int datalsize];
int front; // Points to front of buffer.
int back; // Points to back of buffer.
QMutex mutex;
s

CS3249 Multithreading

45

void Producer: :run()

{
static int count = 0;
while (!stopped)
{
buffer->mutex.lock();
if (buffer->front != buffer->back - 1 and
'(buffer->front == buffer->BufferSize - 1 and
buffer->back == 0)) // Not full
{
3
buffer->mutex.unlock();
3
stopped = false;
3

CS3249 Multithreading

46

void Consumer: :run()

{
while (!stopped)
{
buffer->mutex.lock();
if (buffer->back != buffer->front) // Not empty.
{
}
buffer->mutex.unlock();
}
stopped = false;
}

CS3249 Multithreading

47

® Safe execution

leowwk-~/course/cs3249/examples/buffer1% bufferl-safe-p500-c100

[IO i T i R
1] P == —x

p.1 p.2 p.3 p.4p.5p.6p.7p.8p.9c.1c.2c.3c.4dc.5c.6c.7c.8c.9p.10
1 p.12 p.13 p.14 p.15 p.16 p.17 p.18 ¢c.10 €¢.11 c.12 c.13 c.14 ¢.15 c.16 c.17
8 p.19 p.20 p.21 p.22 p.23 p.24 p.25 p.26 p.27 .19 c.20 c.21 c.22 c.23 c.24
3 c.26 c.27 p.28 p.29 p.30 p.31 p.32 p.33 p.34 p.35 p.36 Cc.28 .29 c.30 c.31
2 c.33 c.34 c.35 c.36

Producer and consumer rotate to access whole buffer.
Reason:

e Producer keeps locking mutex immediately after unlocking.
e Consumer can't lock mutex until buffer is full.

No benefit with multithreading.

CS3249 Multithreading

In practice, after unlocking mutex,
producer does something before locking mutex again.

void Producer: :run()

{
while (!stopped)
{
spend time to produce data;
buffer->mutex.lock();
if (buffer is not full)
{
write to buffer;
3
buffer->mutex.unlock();
3
stopped = false;
3

CS3249 Multithreading

49

©® Safe execution
Producer and consumer run concurrently. More efficient.

leowwk-~/course/cs3249/examples/buffer1$ bufferl-safe-p250x2-c100

p.1 p.2 p.2 p.4 p.3p.6c.1c.2c.3 c.4c.5c.6p.7c.7p.8 c.8p.9c.9p.10 c.1
0 p.11 c.11 p.12 c.12 p.13 c.13 p.14 c.14 p.15 c.153 p.16 c.16 p.17 c.17 p.18 c.1
8 p.19 c.19 p.20 .20 p.21 .21 p.22 c.22 p.23 .23 p.24 c.24 p.25 c.25 p.26 C.2
6 p.27 c.27 p.28 c.28 p.29 c.29 I

CS3249 Multithreading 50

® Question:

In the previous examples, producer and consumer increment
pointers before writing and read data.

What if they increment pointers after writing and reading?
(exercise)

CS3249 Multithreading

51

® Caution

Locking and unlocking mutex in complex functions or
functions that use C++ exceptions can be error-prone:
mutex is locked but not unlocked.

QMutexLocker's destructor automatically unlocks mutex.

CS3249 Multithreading

52

® Instead Of
void Consumer: :run()
{
while (!stopped)
{
buffer->mutex.lock();
... // read data
buffer->mutex.unlock();
}
}
do
void Consumer: :run()
{
while (!stopped)
{
QMutexLocker locker(&(buffer->mutex));
. // read data
}
}

CS3249 Multithreading

53

Other Protection Mechanisms

©® QReadWritelLock
Only one object can acquire write lock.
Many objects can acquire read lock.

© QSemaphore

Can acquire locks on multiple resources.

CS3249 Multithreading

54

]
Communication with Main Thread

® Qt application starts with one main thread.
Only main thread can create QApplication object, call exec().
Main thread runs main event loop.
Main thread can start secondary threads.

® Secondary threads
Run their own event loops.
Can talk to each other via shared variables and mutex.
Cannot talk to main thread via shared variables and mutex.
¢ \Would lock main event loop and freeze GUI.
Qt's solution: signal-slot.

CS3249 Multithreading 55

® Implementation of signal-slot: same thread
Synchronous: implemented as function calls via meta object.
® connection =» metacall(id), id is signal or slot ID.
® emit signhal =» QMetaObject::activate(signallD).

source target
object object
connect()
signal [slot
—| valuedChange() setValue() [
metacall() QMetaObject metacall()

activate()

CS3249 Multithreading 56

® Implementation of signal-slot: different threads
Asynchronous: implemented by posting event.
e Still have metacall(id).

® emit sighal = postEvent(receiver, event).

source target

object object
connect()

signal [slot

— | valuedChange() setValue() [+
metacall() target thread's metacall()
event loop
postEvent()
exec()

CS3249 Multithreading 57

Thread Safety

® Thread-safe function
Can be called safely from different threads simultaneously.

® Thread-safe class
All class functions are thread-safe.

® Reentrant function

Can be called from different threads simultaneously.
May not be thread-safe.

Functions that don't access shared variables are reentrant.

® Reentrant class

Different class instances can be used simultaneously In
different threads.

CS3249 Multithreading 58

—————
® Most of Qt's non-GUI classes are reentrant.

® C++ classes that don't reference global or shared data
are reentrant.

©® QWidget and its subclasses are not reentrant.
They have to run in the same main thread.

Cannot directly call GUI functions from secondary thread.
Have to emit signals which are connected to slots.

® Qt's network classes are reentrant.

CS3249 Multithreading

i)

Caution

® Multithreading programs can be difficult to debug.
® Use only If necessary, and with caution.

CS3249 Multithreading

60

Summary

® Multithreading runs multiple threads simultaneously.
® Ul operations must run in main thread.
® Non-Ul operations can run in secondary threads.

® Secondary threads communicate with main thread
using signal-slot.

® With multiple threads, need to synchronise threads.
® Protect critical regions that access shared data.
® Avoid locking mutex immediately after unlocking.

CS3249 Multithreading 61

Further Reading

[Blan2008] chap. 18:

® Other protection mechanisms:
read-write-lock, semaphore, etc.

® Communicating with main thread.

[Summ2011] chap 7:

® QtConcurrent: high-level API for mutlithreading.
[Lewi1995]:

® Introduction to multithreading.

CS3249 Multithreading

62

Reference

® J. Blanchette and M. Summerfield, C++ GUI Programming with Qt 4,
2nd ed., Prentice Hall, 2008.

® M. Summerfield, Advanced Qt Programming, Prentice Hall 2001.

® B. Lewis, SunSoft Press, D. J. Berg, Threads Primer: A Guide to
Multithreaded Programming, Prentice Hall, 1995.

CS3249 Multithreading

63

