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Process

® A process is a running program managed by OS.

® A process consists of
executable code in memory
static and dynamic data
execution context
® program counter
® contents of registers
e stack pointer
® memory management information,
® etc.
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® Memory protection
A process has it own address space or virtual memory space.
Cannot access address spaces of other processes.
OS maps virtual memory to physical memory.

® Multiprogramming or multitasking
A process is given a fixed time to run.

When time is up, OS suspends the process,
and switches context to another waiting process.

® Processes are heavy-weight
Context switching is costly.
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Multithreading

® Thread
A light-weight sequence of a running program.
All threads of a process use the same address space.
Context switching is cheaper.

® Multithreading
Run multiple threads at the same time.
Different threads can run in different processors.
Some programming languages support multithreading

e Ada, Java
In Unix/Linux, use pthread to implement multithreading.
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Multithreading in Qt
® Qt application can run in multiple threads.
All window operations must run in the main thread.

Non-window operations can run in secondary threads.

® Qt has a QThread class for easy creation of threads.
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Thread Creation

// Thread.h

/ Inherits QThread
class Thread: public QThread

{
Q_OBJECT

public:
Thread();

void stop(); Redefines QThread: : run()
protected: /////////

void run();

private: ////////

volatile bool stopped;
13

volatile tells compiler not to
optimise; variable is accessed
from other threads.
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// Thread.cpp

Thread: :Thread()

{ e
stopped = false; — | Initialise
)

{ K . .
: eep running until stopped
while (stoppec) - IS seﬁ to trueg. "

stopped = false; —

cout << "\n"; Reset
}
void Thread::stop()~\\\\\\\\\
{ Someone will call it to set
} stopped = true; stopped to true.
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® Use dialog to illustrate thread creation and stopping.

Thread test

click start to start thread Start ||,_ Quit J

click stop to stop thread | | Step | | Quit
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// ThreadDialog.h

class ThreadDialog : public QDialog

{
Q_OBJECT

public:
ThreadDialog(QWidget *parent = 0);

protected:
void closeEvent(QCloseEvent *event);

private slots:
void startOrStopThread();

private:
Thread thread;
QPushButton *threadButton;
QPushButton *quitButton;

+;
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// ThreadDialog.cpp

ThreadDialog: :ThreadDialog(QWidget *parent):
QDialog(parent)
{

// Create widgets.

threadButton = new QPushButton(tr(”Start”));
connect(threadButton, SIGNAL(clicked()),
this, SLOT(startOrStopThread()));

quitButton = new QPushButton(tr("Quit”));

quitButton->setDefault(true);

connect(quitButton, SIGNAL(clicked()),
this, SLOT(close()));
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// Layout widgets.

QHBoxLayout *layout = new QHBoxLayout;
layout->addWidget (threadButton);
layout->addWidget (quitButton);
setlLayout(layout);
setWindowTitle(tr("Thread test”));

void ThreadDialog: :closeEvent(QCloseEvent *event)

{
thread.stop(); // Stop the thread.

thread.wait(); // Wait for thread to finish.

event->accept();
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void ThreadDialog: :startOrStopThread()

{
if (thread.isRunning())

{
thread.stop();
threadButton->setText(tr("Start"));
}
else
{
thread.start();
threadButton->setText(tr("Stop"));
)

® isRunning() and start() are inherited from QThread.
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Staying Responsive

® One way Is to dispatch events regularly.
long-operation()

{
for each iteration
{
do work of one iteration;
gApp—>processEvents(); // dispatch events
3
3

This method is impossible if
e you don't have source code of long-operation, or
e you don't want to change the source code.

® Alternative: run long operation in another thread.
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Example: Volume Image Viewer

@ 3 D I m ag e IS |arg e : & ™ Volume Viewer - fhome/leowwk/project/medical images/brain 1/dicom/12010615/51270000

takes a while to load. |~ " #EO @@ cn L

® Want to show progress
while loading.

(256, 256, 192) (L:45, W:90)
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// program fragment

void VolumeViewer: :loadImage(const QString &dirName)

{
VTKDICOMReader *reader = VTKDICOMReader: :New() ;
char xdir = dirName.toAscii().data();
reader->SetDirectoryName(dir);
reader->Update();

// display image ...
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// Method 1: use wait cursor

void VolumeViewer: :loadImage(const QString &dirName)

{
VTKDICOMReader *reader = VTKDICOMReader: :New() ;

char *dir = dirName.toAscii().data();
reader->SetDirectoryName(dir);

QApplication: :setOverrideCursor(Qt: :WaitCursor);
reader->Update();
QApplication: :restoreOverrideCursor();

// display image ...

CS3249 Multithreading

18



M@ Volume Viewer - /home/leowwk/project/medical images/brain 1/dicom/12010615/51270000

A==

(256, 256, 192) (L:45, W:90)
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// Method 2: Multithreading

class ReadThread: public QThread

{
Q_OBJECT

public:
ReadThread(vtkDICOMImageReader *rd);
bool 1sDone();

protected:
void run();

private:
volatile bool done;
vtkDICOMImageReader *reader;

1
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ReadThread: :ReadThread(vtkDICOMImageReader *rd)
{

reader = rd; // Keep it for run function.
done = false; // Init.

bool ReadThread: :isDone()
{

}

return done;

void ReadThread: :run()

{
reader->Update(); // Read image.

done = true;
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void VolumeViewer: :loadImage(const QString &dirName)
{
VTKDICOMReader *reader = VTKDICOMReader: :New() ;
char *dir = dirName.toAscii().data();
reader->SetDirectoryName(dir);

QProgressDialog progress(
QString("Reading, please wait..."),
QString("Close"”), 0, 0);

progress.show();

gApp->processEvents(); // Optional

ReadThread thread(rd);

thread.start();

while(!thread.isDone())
gApp->processEvents();

thread.quit(); // Stop thread’'s event loop.

progress.hide();

// display image ...
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M@ Volume Viewer - /home/leowwk/project/medical images/brain 1/dicom/12010615/51270000

A==

M5 volumeviewer

Reading, please wait...

| Close |

(256, 256, 192) (L:45, W:90)
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® In general, can allow certain interactions in main thread
Instead of just displaying progress dialog.

® Caution:
Operations in different threads must not conflict.

e Example: While doing long calculation on data,
must disable GUI's read, edit functions.

openFileAction->setEnabled(false);

If different threads refer to same data (shared data),
must synchronise threads.

e Otherwise, may get corrupted data or unstable execution.

CS3249 Multithreading 24



Thread Synchronisation

® Producer-consumer problem:
Producer and consumer share common buffer.
Producer adds to front of buffer until it is full. —
Consumer removes from back of buffer until it is | empty.

l ,
T T

back front

Increment pointer before read / write data.
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Empty buffer
back front
Full buffer
1 2 3 4 9
back front
10 | 11 | 12 | 13 9
front back
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% Buffer test

start producer

Program Structure

control

start consumer |

Producer

start /
stop

write
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Buffer

¢

start /
stop

read
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// Buffer.h
class Buffer
{
friend class Producer;
friend class Consumer;
public:
Buffer() {front = back = 0;} // Init to empty buffer.
protected:
enum {size = 10};
int datalsize];
int front; // Points to front of buffer.
int back; // Points to back of buffer.
13
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// Producer.h

class Producer: public QThread

{
Q_OBJECT
public:
Producer (Buffer *b);
void stop();
protected:
void run();
private:
Buffer *buffer; // Points to shared buffer.
volatile bool stopped;
s
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// Producer.cpp

Producer: :Producer (Buffer =*b)

{
buffer = b; // Keeps pointer to shared buffer.
stopped = false;

void Producer: :stop()

{
b

stopped = true;

CS3249 Multithreading

30



void Producer: :run()

{

static int data = 9;

while (!stopped)
{
if (buffer->front != buffer->back - 1 and
' (buffer->front == buffer->size - 1 and
buffer->back == 0)) // Not full

++(buffer->front); // Increment front.
if (buffer->front == buffer->size)
buffer->front = @; // Wrap around.

msleep(500); // Simulate put to sleep by OS.
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++data;

// Add data to buffer.
buffer->datalbuffer->front] = data;
cout << "p." << data << " " << flush;

}

stopped = false;
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// Consumer.h

class Consumer: public QThread

{
Q_OBJECT
public:
Consumer (Buffer *b);
void stop();
protected:
void run();
private:
Buffer *buffer; // Points to shared buffer.
volatile bool stopped;
s
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// Consumer.cpp

Consumer: :Consumer (Buffer *b)

{
buffer = b; // Keeps pointer to shared buffer.
stopped = false;

void Consumer: :stop()

{
b

stopped = true;
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void Consumer: :run()

{
while (!stopped)
{
if (buffer->back != buffer->front) // Not empty.
{
++(buffer->back); // Increment back.
if (buffer->back == buffer->size)
buffer->back = @; // Wrap around.
msleep(100); // Simulate put to sleep by OS.
// Get data.
int data = buffer->datalbuffer->back];
cout << "c."” << data << " " << flush;
J
3
stopped = false;
3

CS3249 Multithreading

35



// main.cpp

int main(int argc, char *x*args)

{
QApplication app(argc, args);
Buffer xbuffer = new Buffer;
Producer *producer = new Producer(buffer);
Consumer *consumer = new Consumer (buffer);
Control *control = new Control(producer, consumer);
control->show();
return app.exec();

}
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® Buffer overrun can happen.
Example: Empty buffer with previously read data (grey).

P

back front

Producer increments pointer,
then it is put to sleep by OS before writing data to buffer.

P

back front
Consumer sees non-empty buffer.
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Consumer increments pointer and reads 6 (garbage).

P

back front

Producer wakes up and writes new data 11.

11

b

back front

Consumers sees empty buffer, never reads 11.
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Producer increments pointer, writes 12.

11 | 12

b

back front

Consumer increments pointer, reads 12, misses 11.

11 | 12

T

back front
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® If producer always sleeps after incrementing pointer...
Example: Empty buffer with previously read data (grey).

P

back front

Producer increments pointer,
then it is put to sleep by OS before writing data to buffer.

P

back front
Consumer sees non-empty buffer.
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Consumer increments pointer and reads 6 (garbage).

P

back front

Producer wakes up and writes new data 11.

11

b

back front
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Producer increments pointer, then goes to sleep.

11

b

back front

Consumer increments pointer, reads 7 (garbage).

11

Pt

back front
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® Unsafe execution

leowwk-~/course/cs3249/examples/buffer1$% bufferl-unsafe-p500-c250
p.1 p.2 p.3 p.4p.5p.6c.1c.2p.7c.3 c.4p.8c.5c.6p.9c.7c.8p.10c.9c.1
0p.11 c.11 c.2 p.12 ¢.3 p.13 c.4 p.14 ¢c.5 p.15 c.6 p.16 Cc.7 p.17 c.8 p.18 Cc.9 p

27 .18 p.28 c.19 p.29 c.20

p.20 |}

.19 c.10 p.X0 c.11 p.21 c.12 p.22 c.13 p.23 c.14 p.X4 c.15 p.25 c.16 p.26 c.17 1

buffer
overrun

\

consumer sees
empty buffer

before producer

writes new data

consumer reads

garbage before

producer writes
new data

Consumer sleeps less...

leowwk-~/course/cs3249/examples/buffer1$ bufferl-unsafe-p500-c100
.3 c.4 p.6 c.5 c.b c.1072693248 p.7 c.0 p.8 c.0 p.9
p.12 ¢c.3 p.13 c.4 p.14 c.5 p.15 c.6 p.16 c.7 p.17
.11 p.21 c.12 p.22 c.13 p.23 c.14 p.24 c.15 p.25 c.

p.1 p.2 p.3 p.4 p.5c.1 c.2
c.-8923160 p.10 c.1 p.11 c.
c.8 p.18 c.9 p.19 c.10 p.20
16 p.26 c.17 p.27 c.18 p.28

CS3249
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® Qt provides QMutex to protect critical region.

mutex =

mutual exclusion

If a thread tries to

lock a locked mutex,

It Is put to sleep

until mutex is unlocked.

CS3249

Thread 1 Mutex Thread 2
| | |
lock | lock
- — — - — — — — — :‘ lock
-l
block
do work
sleep
<l unlock | unlock
- unlock
..‘. _________
<] [0cK 1
--------- -
wake
T T T
Multithreading
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// Buffer.h
class Buffer
{
friend class Producer;
friend class Consumer;
public:
Buffer() {front = back = 0;} // Init to empty buffer.
protected:
enum {size = 10};
int datalsize];
int front; // Points to front of buffer.
int back; // Points to back of buffer.
QMutex mutex;
s

CS3249 Multithreading
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void Producer: :run()

{
static int count = 0;
while (!stopped)
{
buffer->mutex.lock();
if (buffer->front != buffer->back - 1 and
'(buffer->front == buffer->BufferSize - 1 and
buffer->back == 0)) // Not full
{
3
buffer->mutex.unlock();
3
stopped = false;
3
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void Consumer: :run()

{
while (!stopped)
{
buffer->mutex.lock();
if (buffer->back != buffer->front) // Not empty.
{
}
buffer->mutex.unlock();
}
stopped = false;
}

CS3249 Multithreading
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® Safe execution

leowwk-~/course/cs3249/examples/buffer1% bufferl-safe-p500-c100

[ IO i T i R
1] P == —x

p.1 p.2 p.3 p.4p.5p.6p.7p.8p.9c.1c.2c.3c.4dc.5c.6c.7c.8c.9p.10
1 p.12 p.13 p.14 p.15 p.16 p.17 p.18 ¢c.10 €¢.11 c.12 c.13 c.14 ¢.15 c.16 c.17
8 p.19 p.20 p.21 p.22 p.23 p.24 p.25 p.26 p.27 .19 c.20 c.21 c.22 c.23 c.24
3 c.26 c.27 p.28 p.29 p.30 p.31 p.32 p.33 p.34 p.35 p.36 Cc.28 .29 c.30 c.31
2 c.33 c.34 c.35 c.36

Producer and consumer rotate to access whole buffer.
Reason:

e Producer keeps locking mutex immediately after unlocking.
e Consumer can't lock mutex until buffer is full.

No benefit with multithreading.
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In practice, after unlocking mutex,
producer does something before locking mutex again.

void Producer: :run()

{
while (!stopped)
{
spend time to produce data;
buffer->mutex.lock();
if (buffer is not full)
{
write to buffer;
3
buffer->mutex.unlock();
3
stopped = false;
3

CS3249 Multithreading
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©® Safe execution
Producer and consumer run concurrently. More efficient.

leowwk-~/course/cs3249/examples/buffer1$ bufferl-safe-p250x2-c100

p.1 p.2 p.2 p.4 p.3p.6c.1c.2c.3 c.4c.5c.6p.7c.7p.8 c.8p.9c.9p.10 c.1
0 p.11 c.11 p.12 c.12 p.13 c.13 p.14 c.14 p.15 c.153 p.16 c.16 p.17 c.17 p.18 c.1
8 p.19 c.19 p.20 .20 p.21 .21 p.22 c.22 p.23 .23 p.24 c.24 p.25 c.25 p.26 C.2
6 p.27 c.27 p.28 c.28 p.29 c.29 I

CS3249 Multithreading 50



® Question:

In the previous examples, producer and consumer increment
pointers before writing and read data.

What if they increment pointers after writing and reading?
(exercise)

CS3249 Multithreading
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® Caution

Locking and unlocking mutex in complex functions or
functions that use C++ exceptions can be error-prone:
mutex is locked but not unlocked.

QMutexLocker's destructor automatically unlocks mutex.

CS3249 Multithreading
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® Instead Of
void Consumer: :run()
{
while (!stopped)
{
buffer->mutex.lock();
... // read data
buffer->mutex.unlock();
}
}
do
void Consumer: :run()
{
while (!stopped)
{
QMutexLocker locker(&(buffer->mutex));
. // read data
}
}

CS3249 Multithreading
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Other Protection Mechanisms

©® QReadWritelLock
Only one object can acquire write lock.
Many objects can acquire read lock.

© QSemaphore

Can acquire locks on multiple resources.

CS3249 Multithreading
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Communication with Main Thread

® Qt application starts with one main thread.
Only main thread can create QApplication object, call exec().
Main thread runs main event loop.
Main thread can start secondary threads.

® Secondary threads
Run their own event loops.
Can talk to each other via shared variables and mutex.
Cannot talk to main thread via shared variables and mutex.
¢ \Would lock main event loop and freeze GUI.
Qt's solution: signal-slot.
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® Implementation of signal-slot: same thread
Synchronous: implemented as function calls via meta object.
® connection =» metacall(id), id is signal or slot ID.
® emit signhal =» QMetaObject::activate(signallD).

source target
object object
connect()
signal [ slot
—| valuedChange() setValue() [
metacall() QMetaObject metacall()

activate()
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® Implementation of signal-slot: different threads
Asynchronous: implemented by posting event.
e Still have metacall(id).

® emit sighal = postEvent(receiver, event).

source target

object object
connect()

signal [ slot

— | valuedChange() setValue() [+
metacall() target thread's metacall()
event loop
postEvent()
exec()
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Thread Safety

® Thread-safe function
Can be called safely from different threads simultaneously.

® Thread-safe class
All class functions are thread-safe.

® Reentrant function

Can be called from different threads simultaneously.
May not be thread-safe.

Functions that don't access shared variables are reentrant.

® Reentrant class

Different class instances can be used simultaneously In
different threads.
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—————
® Most of Qt's non-GUI classes are reentrant.

® C++ classes that don't reference global or shared data
are reentrant.

©® QWidget and its subclasses are not reentrant.
They have to run in the same main thread.

Cannot directly call GUI functions from secondary thread.
Have to emit signals which are connected to slots.

® Qt's network classes are reentrant.

CS3249 Multithreading
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Caution

® Multithreading programs can be difficult to debug.
® Use only If necessary, and with caution.
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Summary

® Multithreading runs multiple threads simultaneously.
® Ul operations must run in main thread.
® Non-Ul operations can run in secondary threads.

® Secondary threads communicate with main thread
using signal-slot.

® With multiple threads, need to synchronise threads.
® Protect critical regions that access shared data.
® Avoid locking mutex immediately after unlocking.
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Further Reading

[Blan2008] chap. 18:

® Other protection mechanisms:
read-write-lock, semaphore, etc.

® Communicating with main thread.

[Summ2011] chap 7:

® QtConcurrent: high-level API for mutlithreading.
[Lewi1995]:

® Introduction to multithreading.
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