
CS3249 Windowing Systems 1
CS3249

Windowing Systems 1
1CS3249 Windowing Systems

Windowing Systems

Leow Wee Kheng
CS3249 User Interface Development

CS3249 Windowing Systems 2CS3249 Windowing Systems 2CS3249
Windowing Systems 2
Windowing Systems 2CS3249

Modern computers come with
graphical user interfaces...

CS3249 Windowing Systems 3CS3249 Windowing Systems 3CS3249
Windowing Systems 3
Windowing Systems 3CS3249

Windows XP

CS3249 Windowing Systems 4CS3249 Windowing Systems 4CS3249
Windowing Systems 4
Windowing Systems 4CS3249

Ubuntu

CS3249 Windowing Systems 5
CS3249 5Windowing Systems

What is needed for GUI to work?

 What is needed for
drop-down menu to work?
 How to paint the menu?

 Where is the mouse?

 How to move the cursor?

 Which part of the menu is
the mouse pointing at?

 Which mouse button is clicked?

CS3249 Windowing Systems 6CS3249 Windowing Systems 6CS3249
Windowing Systems 6
Windowing Systems 6CS3249

Supports needed:

 Capture user actions.
 Low-level actions are captured by operating system.

 Translated to higher-level actions by windowing system.

 Pass user actions to application codes.
 Connect UI elements to application codes.

CS3249 Windowing Systems 7
CS3249 7Windowing Systems

Windowing System

 Modern GUI works on top of a windowing system.

 Windowing system provides supports for
 input & output devices

thru operating system

 high-level abstractions
of graphical primitives

 window management

Applications

Application Frameworks

Windowing System

Operating System

CS3249 Windowing Systems 8
CS3249 8Windowing Systems

X Window System

 A client-server framework for GUI.

 X server
 provide multi-client access over network

 receive and understand client messages

 send user responses to clients

 perform all drawing

 maintain data structures for resources

 Client applications can run on other hosts in network.

CS3249 Windowing Systems 9CS3249 Windowing Systems 9CS3249
Windowing Systems 9
Windowing Systems 9CS3249

X System

Applications

Toolkit /
Athena Widgets

Window
Manager

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel

CS3249 Windowing Systems 10CS3249 Windowing Systems 10CS3249
Windowing Systems 10
Windowing Systems 10CS3249

X / Motif

Applications

Toolkit
Motif Widgets &

Window Manager

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel

CS3249 Windowing Systems 11CS3249 Windowing Systems 11CS3249
Windowing Systems 11
Windowing Systems 11CS3249

X with Motif

CS3249 Windowing Systems 12CS3249 Windowing Systems 12CS3249
Windowing Systems 12
Windowing Systems 12CS3249

X with GNOME

Applications

Toolkit GNOME Desktop Environment

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel

CS3249 Windowing Systems 13CS3249 Windowing Systems 13CS3249
Windowing Systems 13
Windowing Systems 13CS3249

X with GNOME

CS3249 Windowing Systems 14CS3249 Windowing Systems 14CS3249
Windowing Systems 14
Windowing Systems 14CS3249

X with KDE

Applications

Toolkit K Desktop Environment

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel

CS3249 Windowing Systems 15CS3249 Windowing Systems 15CS3249
Windowing Systems 15
Windowing Systems 15CS3249

X with KDE

CS3249 Windowing Systems 16
CS3249 16Windowing Systems

Mac OS X

Applications

Aqua User Interface

Cocoa Carbon Java JDK

Quartz 2D OpenGL QuickTime

Quartz Compositor
(window manager)

System Library

Unix Kernel (Darwin)

CS3249 Windowing Systems 17CS3249 Windowing Systems 17CS3249
Windowing Systems 17
Windowing Systems 17CS3249

Mac OS X Mountain Lion

CS3249 Windowing Systems 18
CS3249 18Windowing Systems

Microsoft Windows

Applications

Aero
Desktop

Framework
Classes

Microsoft Foundation
Class

Common Language
Runtime

Operating System

CS3249 Windowing Systems 19CS3249 Windowing Systems 19CS3249
Windowing Systems 19
Windowing Systems 19CS3249

Windows 7

CS3249 Windowing Systems 20CS3249 Windowing Systems 20CS3249
Windowing Systems 20
Windowing Systems 20CS3249

Windows 8

CS3249 Windowing Systems 21
CS3249 21Windowing Systems

Qt

 In UNIX and Linux system, Qt sits on top of Xlib.

Application

Xaw Motif
GTK+ Qt

Xt

Xlib

X Protocol

UNIX / Linux

Xaw: Athena widgets

CS3249 Windowing Systems 22
CS3249 22Windowing Systems

Sequential Program

 Sequential program runs
one statement at a time.

 A statement is run till completion
before proceeding to
next statement.

statement 1

statement n

inputs

outputs

⋮

CS3249 Windowing Systems 23
CS3249 23Windowing Systems

Polling

 Sequentially check for
user actions.

 Slow if long check list.

 Can't respond to user
actions promptly.

if left button clicked,
process left button

⋮

if middle button clicked,
process middle button

CS3249 Windowing Systems 24
CS3249 24Windowing Systems

Event-Driven Program

generate
event

append
event

dispatch
event

process
event

Windowing
System

Event Loop

CS3249 Windowing Systems 25CS3249 Windowing Systems 25CS3249
Windowing Systems 25
Windowing Systems 25CS3249

 Events signal user actions, e.g.,
 mouse click, mouse move

 key press, key release

 window activated, window deactivated

 Events can be generated by
 operating system

 device drivers

 windowing system, window manager

 application program

 Events tend to be too low-level
 When left-mouse button is clicked, which item is selected?

 Windowing systems provide higher-level mechanisms.

CS3249 Windowing Systems 26
CS3249 26Windowing Systems

X / Motif

 Implemented in C.
 C++ hasn't appeared yet!

 Use C struct to emulate object class.

 Use callbacks: functions that perform GUI tasks.

 XtCallbackProc callback(widget, data, callback_data)

 Callbacks are attached to widgets.

 XtAddCallback(widget, event_type, callback, data)

 Widgets call callbacks when activated.
 Widgets generate callback_data according to event_type.

CS3249 Windowing Systems 27CS3249 Windowing Systems 27CS3249
Windowing Systems 27
Windowing Systems 27CS3249

CB

// Create widgets
slider = XmCreateScale(parent, “slider”, ...);
spinBoxText = XmCreateTextField(parent, “text”, ...);

// Add callbacks to widgets
XtAddCallback(slider, XmNvalueChangedCallback,
 sliderValueChanged, spinBoxText);
XtAddCallBack(spinBoxTex, XmNactivateCallback,
 spinBoxTextVerify, slider);

// Define callback functions
XtCallbackProc sliderValueChanged(Widget slider,
 Widget spinBoxText, XmScaleCallbackStruct *cbs)
{
 int value;
 XtVaGetValues(slider, XmNvalue, &value, 0);
 XtVaSetValues(textField, XmNposition, value, 0);
}

CS3249 Windowing Systems 28CS3249 Windowing Systems 28CS3249
Windowing Systems 28
Windowing Systems 28CS3249

CB

XtCallbackProc spinBoxTextVerify(Widget spinBoxText,
 Widget slider, XmAnyCallbackStruct *cbs)
{
 ...
 changed = 0;
 str = XmTextFieldGetString (textField);
 if (str && (ret = sscanf(str, "%d", &value)) > 0)
 if (value >= MinValue && value <= MaxValue) {
 XtVaSetValues(textField, XmNposition, value, 0);
 XtVaSetValues(slider, XmNvalue, value, 0);
 changed = 1;
 }
 ...

 if (!changed) {
 XtVaGetValues(textField, XmNposition, &value, 0);
 sprintf(string, "%d", value);
 XmTextFieldSetString(textField, string);
 }
}

CS3249 Windowing Systems 29CS3249 Windowing Systems 29CS3249
Windowing Systems 29
Windowing Systems 29CS3249

 Can think of callbacks as belonging to widget.
But, programmer implements the callbacks.

 slider's XmNvalueChangedCallback event is linked to
sliderValueChanged callback function.

 After slider is dragged to new position, it inserts
XmNvalueChangedCallback event into event queue.

 X event dispatcher processes event and
calls sliderValueChanged.

XmNvalueChangedCallback

slider

sliderValueChanged

CS3249 Windowing Systems 30CS3249 Windowing Systems 30CS3249
Windowing Systems 30
Windowing Systems 30CS3249

Callbacks have two shortcomings

 Not type-safe:
 All callbacks have the same generic arguments.

 Cannot guarantee calling function passes correct arguments.

 Tight coupling:
 Widgets are explicitly linked to callbacks.

CS3249 Windowing Systems 31
CS3249 31Windowing Systems

Qt

 Implemented in C++.

 Adopts signals and slots.

 Object emits signal in
response to event.

 Object has slots
that perform tasks.

 Connect signals to
slots in application.

CS3249 Windowing Systems 32CS3249 Windowing Systems 32CS3249
Windowing Systems 32
Windowing Systems 32CS3249

o

 Can connect one signal to multiple slots.
connect(slider, SIGNAL(valuedChanged(int)),

spinBox, SLOT(setValue(int)));
connect(slider, SIGNAL(valuedChanged(int)),

this, SLOT(updateStatusBar(int)));

 Can connect multiple signals to same slot.
connect(lcd, SIGNAL(overflow()),

this, SLOT(handleMathError()));
connect(calculator, SIGNAL(divisionByZero()),

this, SLOT(handleMathError()));

 Can connect signal to signal.
connect(lineEdit, SIGNAL(textChanged(const QString &)),

this, SIGNAL(updateRecord(const QString &)));

CS3249 Windowing Systems 33CS3249 Windowing Systems 33CS3249
Windowing Systems 33
Windowing Systems 33CS3249

Advantages of signals and slots

 Loose coupling:
 Objects emit signals in response to events.

 Objects are not explicitly linked to slot functions.

 Type safe:
 Arguments of signals and slots must match.

 Flexible:
 Not limited to widgets,

can be used by any QObject subclass.

Implemented by meta-object system.

CS3249 Windowing Systems 34
CS3249 34Windowing Systems

Microsoft Windows

Three ways to create Windows applications in C++

 Use Windows API

 Calls Windows OS functions. Low-level programming.

 Use Microsoft Foundation Class (MFC)

 Encapsulates Windows API.

 Higher-level programming.

 Use Windows Forms

 For forms-based application that run with Common Language
Runtime.

CS3249 Windowing Systems 35
CS3249 35Windowing Systems

MFC

 MFC provides two mechanisms
 Message mapping

 Data binding

 Message Mapping
 Messages

 Like higher-level events.

 Message handlers
 Like callback functions.

 Message map
 Connects messages to message handlers.

CS3249 Windowing Systems 36CS3249 Windowing Systems 36CS3249
Windowing Systems 36
Windowing Systems 36CS3249

 Message map handles 4 kinds of messages:
 WM_COMMAND

 menu

 Child window messages
 button, combo box, text edit, list box

 WM_Message
 miscellaneous window messages

 User defined messages

 Why divide into 4 categories? Why not just 1?

CS3249 Windowing Systems 37CS3249 Windowing Systems 37CS3249
Windowing Systems 37
Windowing Systems 37CS3249

class CAgeDialogApp: public CWinApp

{
 ...
 CSliderCtrl slider;
 CEdit spinBoxText;
 ...
 afx_msg void OnHScroll(UNIT code, UNIT position,
 CScrollBar *scrollBar);
 afx_msg void OnEnUpdate();
 DECLARE_MESSAGE_MAP()
};

 afx_msg declares message handlers.

 DECLARE_MESSAGE_MAP declares that the class contains message
handlers.

CS3249 Windowing Systems 38CS3249 Windowing Systems 38CS3249
Windowing Systems 38
Windowing Systems 38CS3249

// In .c file
BEGIN_MESSAGE_MAP(CAgeDialogApp, CWinApp)
 ON_WM_HSCROLL() // maps to OnHScroll
 ON_EN_UPDATE(IDC_SPINBOXTEXT,
 &CAgeDialogApp::OnEnUpdateTextBox)
END_MESSAGE_MAP()
...

void CAgeDialogApp::OnHScroll(UNIT code, UNIT position,
 CScrollBar *scrollBar)
{
 ... // update text box's state
}

void CAgeDialogApp::OnEnUpdateTextBox()
{
 ... // update slider's state
}

CS3249 Windowing Systems 39
CS3249 39Windowing Systems

Mac OS X

 Provides several tools
 Cocoa

 Carbon

 Cocoa is implemented in Objective-C.

 Cocoa provides two mechanisms:
 Outlets and Actions

 Bindings
 Discussed in Model-View Patterns.

CS3249 Windowing Systems 40
CS3249 40Windowing Systems

Outlets and Actions

 Cocoa widgets are called controls and cells.

 Cells have outlets that point to target objects.

 In response to a user action,
cell generates action message.

 Action message is sent to target,
i.e., call target's action method (function).

CS3249 Windowing Systems 41CS3249 Windowing Systems 41CS3249
Windowing Systems 41
Windowing Systems 41CS3249

 Cocoa target-action mechanism

 Similar to callback mechanism
 action message ≈ widget event

 action method ≈ callback

CS3249 Windowing Systems 42CS3249 Windowing Systems 42CS3249
Windowing Systems 42
Windowing Systems 42CS3249

// In .h file

@property (assign) IBOutlet NSSlider *slider;
@property (assign) IBOutlet NSTextField *spinBoxText;

// In .m file

- (IBAction)sliderValueChanged:(NSSlider *)sender {
 [[self spinBoxText] setIntegerValue:
 [sender integerValue]];
}

- (IBAction)spinBoxTextValueChanged:(NSTextField *)sender {
 [[self slider] setIntegerValue:
 [sender integerValue]];
}

 Connections between outlets and actions are done in UI builder.

CS3249 Windowing Systems 43
CS3249 43Windowing Systems

Comparisons

 X Window callbacks
 Use C functions to connect widgets to callbacks.

 Programmer writes callbacks.

 Programmer writes connection codes.

 Simple and easy to understand, but troublesome to write.

 MFC message map
 Use C++ macros to create codes for message map.

 Programmers write message handlers, like callbacks.

 Programmer inserts macros to make connections.

 Easy to understand at conceptual level, but tend to be messy.

CS3249 Windowing Systems 44CS3249 Windowing Systems 44CS3249
Windowing Systems 44
Windowing Systems 44CS3249

 Cocoa outlets and actions
 Use Objective-C extensions to implement outlets and actions.

 Use UI builder to connect outlets, actions and target.

 Programmer writes action codes (like callbacks),
no need to write connection codes.

 Simple but programming language mechanism is obscured.

 Qt signals and slots
 Use C++ functions to implement meta-object system.

 Use meta-object compiler qmake to auto create codes.

 Widgets come with slot functions.

 Programmer writes simple connection codes.

 Easy to understand at conceptual level.

CS3249 Windowing Systems 45
CS3249 45Windowing Systems

Summary

 GUI works on top of windowing system.

 GUI programs are event-driven.

 Windowing system provides event-handing and
higher-level mechanisms.

 X Window System uses callbacks.

 Qt uses signals and slots.

 Microsoft Windows uses message map.

 Mac OS X uses outlets, actions and bindings.

CS3249 Windowing Systems 46
CS3249 46Windowing Systems

Further Readings

 GUI Comparisons: attached document.

 Signals and slots: [Blan2008] p. 20–22.

 X Window System: [Kell90] chap. 1.

 Motif spin box and callback: [Foun2001] chap. 15.

 MS Windows: [Hort10] p. 1–8.

 MFC message map: [Hort10] p. 903–910.

 Mac OS X: [Tren10] p. 4–20.

 Cocoa outlets, actions, bindings: [Tren10] chap. 8,
[Cocoa] p. 217–227.

CS3249 Windowing Systems 47
CS3249 47Windowing Systems

References

 Cocoa Fundamentals Guide, Apple Inc., 2010.
 J. Blanchette and M. Summerfield, C++ GUI Programming with Qt 4,

2nd ed., Prentice Hall, 2008.
 A. Fountain, J. Huxtable, P. Ferguson and D. Heller, Motif

Programming Manual, O'Reilly, 2001.
 I. Horton, Beginning Visual C++ 2010, Wiley, 2010.
 B. J. Keller, A Practical Guide to X Window Programming, CRC, 1990.
 M. Trent and D. McCormack, Beginning Mac OS X Snow Leopard

Programming, Wiley, 2010.

