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Modern computers come with
graphical user interfaces...
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Windows XP
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Ubuntu



CS3249 Windowing Systems 5
CS3249 5Windowing Systems

What is needed for GUI to work?

 What is needed for
drop-down menu to work?
 How to paint the menu?

 Where is the mouse?

 How to move the cursor?

 Which part of the menu is
the mouse pointing at?

 Which mouse button is clicked?
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Supports needed:

 Capture user actions.
 Low-level actions are captured by operating system.

 Translated to higher-level actions by windowing system.

 Pass user actions to application codes.
 Connect UI elements to application codes.
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Windowing System

 Modern GUI works on top of a windowing system.

 Windowing system provides supports for
 input & output devices

thru operating system

 high-level abstractions
of graphical primitives

 window management

Applications

Application Frameworks

Windowing System

Operating System
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X Window System

 A client-server framework for GUI.

 X server
 provide multi-client access over network

 receive and understand client messages

 send user responses to clients

 perform all drawing

 maintain data structures for resources

 Client applications can run on other hosts in network.
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X System

Applications

Toolkit /
Athena Widgets

Window
Manager

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel
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X / Motif

Applications

Toolkit
Motif Widgets &

Window Manager

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel
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X with Motif
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X with GNOME

Applications

Toolkit GNOME Desktop Environment

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel
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X with GNOME
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X with KDE

Applications

Toolkit K Desktop Environment

Xt Intrinsics

Xlib

X Protocol

System Library

UNIX / Linux Kernel
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X with KDE
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Mac OS X

Applications

Aqua User Interface

Cocoa Carbon Java JDK

Quartz 2D OpenGL QuickTime

Quartz Compositor
(window manager)

System Library

Unix Kernel (Darwin)
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Mac OS X Mountain Lion
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Microsoft Windows 

Applications

Aero
Desktop

Framework
Classes

Microsoft Foundation 
Class

Common Language 
Runtime

Operating System



CS3249 Windowing Systems 19CS3249 Windowing Systems 19CS3249
Windowing Systems 19
Windowing Systems 19CS3249

Windows 7
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Windows 8
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Qt

 In UNIX and Linux system, Qt sits on top of Xlib.

Application

Xaw Motif
GTK+ Qt

Xt

Xlib

X Protocol

UNIX / Linux

Xaw: Athena widgets
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Sequential Program

 Sequential program runs
one statement at a time.

 A statement is run till completion
before proceeding to
next statement.

statement 1

statement n

inputs

outputs

⋮
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Polling

 Sequentially check for
user actions.

 Slow if long check list.

 Can't respond to user
actions promptly.

if left button clicked,
process left button

⋮

if middle button clicked,
process middle button
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Event-Driven Program

generate
event

append
event

dispatch
event

process
event

Windowing
System

Event Loop



CS3249 Windowing Systems 25CS3249 Windowing Systems 25CS3249
Windowing Systems 25
Windowing Systems 25CS3249

 Events signal user actions, e.g.,
 mouse click, mouse move

 key press, key release

 window activated, window deactivated

 Events can be generated by
 operating system

 device drivers

 windowing system, window manager

 application program

 Events tend to be too low-level
 When left-mouse button is clicked, which item is selected?

 Windowing systems provide higher-level mechanisms.
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X / Motif

 Implemented in C.
 C++ hasn't appeared yet!

 Use C struct to emulate object class.

 Use callbacks: functions that perform GUI tasks.

    XtCallbackProc callback(widget, data, callback_data)

 Callbacks are attached to widgets.

    XtAddCallback(widget, event_type, callback, data)

 Widgets call callbacks when activated.
 Widgets generate callback_data according to event_type.
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CB

// Create widgets
slider = XmCreateScale(parent, “slider”, ...);
spinBoxText = XmCreateTextField(parent, “text”, ...);

// Add callbacks to widgets
XtAddCallback(slider, XmNvalueChangedCallback,
    sliderValueChanged, spinBoxText);
XtAddCallBack(spinBoxTex, XmNactivateCallback,
    spinBoxTextVerify, slider);

// Define callback functions
XtCallbackProc sliderValueChanged(Widget slider,
    Widget spinBoxText, XmScaleCallbackStruct *cbs)
{
    int value;
    XtVaGetValues(slider, XmNvalue, &value, 0);
    XtVaSetValues(textField, XmNposition, value, 0);
}
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CB

XtCallbackProc spinBoxTextVerify(Widget spinBoxText,
  Widget slider, XmAnyCallbackStruct *cbs)
{
  ...
  changed = 0;
  str = XmTextFieldGetString (textField);
  if (str && (ret = sscanf(str, "%d", &value)) > 0)
    if (value >= MinValue && value <= MaxValue) {
      XtVaSetValues(textField, XmNposition, value, 0);
      XtVaSetValues(slider, XmNvalue, value, 0);
      changed = 1;
    }
  ...

  if (!changed) {
    XtVaGetValues(textField, XmNposition, &value, 0);
    sprintf(string, "%d", value);
    XmTextFieldSetString(textField, string);
  }
}
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 Can think of callbacks as belonging to widget.
But, programmer implements the callbacks.

 slider's XmNvalueChangedCallback event is linked to 
sliderValueChanged callback function.

 After slider is dragged to new position, it inserts 
XmNvalueChangedCallback event into event queue.

 X event dispatcher processes event and
calls sliderValueChanged.

XmNvalueChangedCallback

slider

sliderValueChanged
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Callbacks have two shortcomings

 Not type-safe:
 All callbacks have the same generic arguments.

 Cannot guarantee calling function passes correct arguments.

 Tight coupling:
 Widgets are explicitly linked to callbacks.
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Qt

 Implemented in C++.

 Adopts signals and slots.

 Object emits signal in
response to event.

 Object has slots
that perform tasks.

 Connect signals to
slots in application.
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o

 Can connect one signal to multiple slots.
connect(slider, SIGNAL(valuedChanged(int)),

spinBox, SLOT(setValue(int)));
connect(slider, SIGNAL(valuedChanged(int)),

this, SLOT(updateStatusBar(int)));

 Can connect multiple signals to same slot.
connect(lcd, SIGNAL(overflow()),

this, SLOT(handleMathError()));
connect(calculator, SIGNAL(divisionByZero()),

this, SLOT(handleMathError()));

 Can connect signal to signal.
connect(lineEdit, SIGNAL(textChanged(const QString &)),

this, SIGNAL(updateRecord(const QString &)));
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Advantages of signals and slots

 Loose coupling:
 Objects emit signals in response to events.

 Objects are not explicitly linked to slot functions.

 Type safe:
 Arguments of signals and slots must match.

 Flexible:
 Not limited to widgets,

can be used by any QObject subclass.

Implemented by meta-object system.
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Microsoft Windows

Three ways to create Windows applications in C++

 Use Windows API

 Calls Windows OS functions. Low-level programming.

 Use Microsoft Foundation Class (MFC)

 Encapsulates Windows API.

 Higher-level programming.

 Use Windows Forms

 For forms-based application that run with Common Language 
Runtime.
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MFC

 MFC provides two mechanisms
 Message mapping

 Data binding

 Message Mapping
 Messages

 Like higher-level events.

 Message handlers
 Like callback functions.

 Message map
 Connects messages to message handlers.
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 Message map handles 4 kinds of messages:
 WM_COMMAND

 menu

 Child window messages
 button, combo box, text edit, list box

 WM_Message
 miscellaneous window messages

 User defined messages

 Why divide into 4 categories? Why not just 1?
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class CAgeDialogApp: public CWinApp

{
    ...
    CSliderCtrl slider;
    CEdit spinBoxText;
    ...
    afx_msg void OnHScroll(UNIT code, UNIT position,
        CScrollBar *scrollBar);
    afx_msg void OnEnUpdate();
    DECLARE_MESSAGE_MAP()
};

 afx_msg declares message handlers.

 DECLARE_MESSAGE_MAP declares that the class contains message 
handlers.
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// In .c file
BEGIN_MESSAGE_MAP(CAgeDialogApp, CWinApp)
    ON_WM_HSCROLL()  // maps to OnHScroll
    ON_EN_UPDATE(IDC_SPINBOXTEXT,
        &CAgeDialogApp::OnEnUpdateTextBox)
END_MESSAGE_MAP()
...

void CAgeDialogApp::OnHScroll(UNIT code, UNIT position,
    CScrollBar *scrollBar)
{
    ... // update text box's state
}

void CAgeDialogApp::OnEnUpdateTextBox()
{
    ... // update slider's state
}
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Mac OS X

 Provides several tools
 Cocoa

 Carbon

 Cocoa is implemented in Objective-C.

 Cocoa provides two mechanisms:
 Outlets and Actions

 Bindings
 Discussed in Model-View Patterns.
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Outlets and Actions

 Cocoa widgets are called controls and cells.

 Cells have outlets that point to target objects.

 In response to a user action,
cell generates action message.

 Action message is sent to target,
i.e., call target's action method (function).
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 Cocoa target-action mechanism

 Similar to callback mechanism
 action message ≈ widget event

 action method ≈ callback 
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// In .h file

@property (assign) IBOutlet NSSlider *slider;
@property (assign) IBOutlet NSTextField *spinBoxText;

// In .m file

- (IBAction)sliderValueChanged:(NSSlider *)sender {
    [[self spinBoxText] setIntegerValue:
      [sender integerValue]];
}

- (IBAction)spinBoxTextValueChanged:(NSTextField *)sender {
    [[self slider] setIntegerValue:
      [sender integerValue]];
}

 Connections between outlets and actions are done in UI builder.
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Comparisons

 X Window callbacks
 Use C functions to connect widgets to callbacks.

 Programmer writes callbacks.

 Programmer writes connection codes.

 Simple and easy to understand, but troublesome to write.

 MFC message map
 Use C++ macros to create codes for message map.

 Programmers write message handlers, like callbacks.

 Programmer inserts macros to make connections.

 Easy to understand at conceptual level, but tend to be messy.
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 Cocoa outlets and actions
 Use Objective-C extensions to implement outlets and actions.

 Use UI builder to connect outlets, actions and target.

 Programmer writes action codes (like callbacks), 
no need to write connection codes.

 Simple but programming language mechanism is obscured.

 Qt signals and slots
 Use C++ functions to implement meta-object system.

 Use meta-object compiler qmake to auto create codes.

 Widgets come with slot functions.

 Programmer writes simple connection codes.

 Easy to understand at conceptual level.
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Summary

 GUI works on top of windowing system.

 GUI programs are event-driven.

 Windowing system provides event-handing and
higher-level mechanisms.

 X Window System uses callbacks.

 Qt uses signals and slots.

 Microsoft Windows uses message map.

 Mac OS X uses outlets, actions and bindings.
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Further Readings

 GUI Comparisons: attached document.

 Signals and slots: [Blan2008] p. 20–22.

 X Window System: [Kell90] chap. 1.

 Motif spin box and callback: [Foun2001] chap. 15.

 MS Windows: [Hort10] p. 1–8.

 MFC message map: [Hort10] p. 903–910.

 Mac OS X: [Tren10] p. 4–20.

 Cocoa outlets, actions, bindings: [Tren10] chap. 8,
[Cocoa] p. 217–227. 
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