
CS3283

GUI Programming

Hugh Anderson
Department of Computing Science,

School of Computing
NUS

hugh@comp.nus.edu.sg

ii

Preface

The FOLDOC1 dictionary of computing defines a GUI as:

(GUI) The use of pictures rather than just words to represent the input and output
of a program. A program with a GUI runs under some windowing system (e.g. The
X Window System, Microsoft Windows, Acorn RISC OS, NEXTSTEP). The program
displays certain icons, buttons, dialogue boxes etc. in its windows on the screen and
the user controls it mainly by moving a pointer on the screen (typically controlled by
a mouse) and selecting certain objects by pressing buttons on the mouse while the
pointer is pointing at them.

Though Apple Computer would like to claim they invented the GUI with their Mac-
intosh operating system, the concept originated in the early 1970s at Xerox’s PARC
laboratory.

The official NUS description of CS3283 is:

This module aims to teach the nuts and bolts of GUI programming. At the end of
the course, students will acquire practical knowledge in Windows programming and
techniques of programming interactive systems. Topics include Windows program-
ming, Motif, Tcl/Tk programming.

An interesting aspect of this course is that there is some emphasis on graphical visualization
methods. These notes are just an expanded set of overheads - you are asked to read supporting
papers, and maintain an active interest in GUI design and implementation. You may find the
latest copy of the notes at

http://www.comp.nus.edu.sg/˜cs3283/ftp/cs3283.pdf

It is my intent in this course to give lots of examples of different GUIs - successful and otherwise,
and to show the methods used to develop these interfaces.

1The Free-On-Line-Dictionary-Of-Computing is found at http://wombat.doc.ic.ac.uk/foldoc/index.html.

iii

iv

Assessment: The proposed assessment may be modified slightly if the need arises, but currently
is as follows:

Assessment Weighting Grade

Assignments 35%
Ass1 Design Group 10
Ass2 Design, prototype Individual 20
Ass3 GUI implementation - Swing/MFC Individual 40
Ass4 GUI/Visualization implementation - Tk/Java3D Group 30

Tutorials 5%
Mid-term Closed book 10%
Final Exam Open Book 50%

Total marks 100%

Textbook: Unfortunately, no single textbook adequately covers the material presented in this
course, so I am providing a set of notes, which may be supplemented by readings from:

1. The User Interface Concepts & Design, Lon Barfield, Addison-Wesley (1993)

2. The JFC Swing Tutorial - A Guide to Constructing GUIs, Kathy Walrath & Mary Campi-
one, Addison-Wesley (1999)

3. Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley (1994)

Tools: You may wish to download and install the following toolkits, copies of which are found
at the course web site at http://www.comp.nus.edu.sg/˜cs3283/ftp.

1. JDK Version 1.3

2. The Cygwin development system, including Tcl/Tk and debuggers

3. The Netbeans IDE, the glade GUI builder, and so on

Topics to be covered: During the course, we cover

� Fundamental GUI concepts (1 lecture)
� Design and programming techniques (3 lectures)
� Cross platform GUI development using Swing and Tcl/Tk (6 lectures)
� Visualization techniques (2 lectures)

Enjoy the course!

Contents

1 GUI concepts 1

1.1 How not to do GUI . 1

1.2 General rules of GUI . 2

1.2.1 Do’s and don’ts . 3

1.3 Types of applications . 3

1.4 Native environments/platforms . 4

1.4.1 MacOS . 4

1.4.2 X . 5

1.4.3 Win32 . 7

1.5 Non-native environments/platforms . 7

1.5.1 Java . 7

1.5.2 Web browser interfaces . 8

1.5.3 Thin client systems . 9

1.6 Widget sets . 9

1.7 Summary of topics . 11

1.8 Sample Assignment - design . 12

2 Design 13

2.1 How not to design . 13

2.2 The design process . 14

2.2.1 Role of designer . 14

v

vi CONTENTS

2.2.2 Building blocks of user interfaces . 15

2.2.3 Tool support, use cases and modelling 16

2.2.4 OO technology and design . 17

2.3 GUI specification and design . 18

2.3.1 A basis for GUI specification and design 18

2.3.2 Formal GUI design . 19

2.3.3 Examples of GUI designs . 19

2.4 3D vizualization specification and design . 22

2.4.1 A basis for visualization specification and design 22

2.4.2 Examples of visualization design . 22

2.5 Summary of topics . 27

2.6 Assignment 2 - design/prototype . 28

3 First steps in GUI programming 29

3.1 How not to do GUI programming . 30

3.1.1 Direct calls to the X API . 30

3.1.2 Direct calls to the Win32 API . 31

3.2 OO GUI toolkits . 33

3.2.1 Event handling . 33

3.2.2 GTK+ and glade . 34

3.2.3 MFC . 35

3.2.4 Java/Swing . 35

3.3 Web interfaces . 35

3.4 Scripting languages . 36

3.5 Summary of topics . 37

4 Scripting language - Tcl/Tk 39

4.1 How not to use scripting languages . 39

4.2 Tcl/Tk . 40

4.2.1 The structure of Tcl/Tk . 41

4.2.2 Tcl/Tk example software . 43

4.2.3 C/Tk . 46

4.3 Summary of topics . 48

CONTENTS vii

5 Introduction to Java/Swing 49

5.1 How not to use Swing . 49

5.2 Getting started . 50

5.3 Swing programming . 50

5.3.1 Pluggable look and feel . 51

5.4 Example application . 52

5.5 Example applet . 53

5.6 Using the netbeans IDE . 54

5.7 Summary of topics . 55

6 Java continued ... 57

6.1 Layout management . 58

6.1.1 BorderLayout . 58

6.1.2 BoxLayout . 58

6.1.3 CardLayout . 58

6.2 Creating menus . 59

6.3 Threads in Swing . 60

6.3.1 Creating threads . 60

6.3.2 Event dispatching thread . 61

6.4 Handling events . 62

6.4.1 Event handlers . 62

6.4.2 Handling events . 63

6.5 Summary of topics . 64

7 Application architecture and web interfaces 65

7.1 Architecture of GUI applications . 65

7.1.1 Standalone . 66

7.2 Shared file . 66

7.3 Shared database . 67

7.4 Web server applications . 67

7.5 Web server with active scripting . 68

7.6 Web server with Java applet . 68

viii CONTENTS

7.7 CGI - Common Gateway Interface . 69

7.7.1 CGI environment variables . 70

7.7.2 CGI forms . 71

7.8 PHP . 72

7.9 Java enhanced . 73

7.10 Summary of topics . 76

7.11 Assignment 4 - Implementation . 77

8 Visualization 79

8.1 The use of 3D . 79

8.2 OpenGL . 80

8.3 Java 3D, VTK - toolkits for 3D . 81

8.4 Case study - network traffic application . 82

8.4.1 Node representation . 82

8.4.2 Traffic and protocol representation . 84

8.4.3 Trend representation . 85

8.4.4 Display . 86

8.5 3D VRML visualization implementation . 88

8.5.1 3DVNT VRML software . 88

8.6 Summary of topics . 94

9 MFC 95

9.1 MFC menus . 95

9.2 MFC Programming . 96

9.3 MFC class hierarchy . 97

9.4 Summary of topics . 98

A Extra notes on Tcl/Tk 101

A.1 Tcl/Tk menus . 102

A.2 The Tk canvas . 103

A.3 Assignment 3 - Implementation . 105

B Case study: GUI implementation 109

B.1 Perl/Tk code . 110

Chapter 1
GUI concepts

T he user interface for software has changed over the years. Early user interfaces were text
based, and normally had a fairly simple interrogative style - prompting the user to provide
needed information in a fixed order. The modern GUI provides for complex interaction

between the user and the application, and often relies on shared concepts or metaphors.

GUI programming is about the conceptualization, design and implementation of that part of a
software application which is concerned with user interaction.

1.1 How not to do GUI

I have decided to start with an example from here at NUS - the leave system for staff in the
department. Notice the dates I have entered, and the error message1:

The question is ... what did I do next?

1It says: “End date should be greater than or equal to start date”.

1

2 GUI concepts

What do we learn from this? I think two points stand out:

1. Try out your applications before delivering them.

2. Ensure that error messages are precise, and indicate the next step.

During this course, I hope to give useful examples of interfaces and techniques - but equally
important is to see these poor examples - how-not-to-do things. How about this one:

Often a single poor example can remind you of things to avoid - a picture of a poor GUI remind-
ing you of a whole range of things.

1.2 General rules of GUI

A key point to understand as we begin our investigation of GUI development is that effective
GUIs owe more to effective psychology than to effective programming. A graphical user inter-
face is not just windows, icons and so on - it also includes an abstract view - not visible, but
understood by the user. A successful GUI will have no clash between this view of the user inter-
face and the more concrete one involving icons, buttons and so on. The term ergonomics might
be used here - we hope for a correlation between the physical and conceptual ergonomics.

Another key point is that humans are not equipped to handle multiple things at one time, and this
leads us to try to keep interfaces simple and uncluttered.

Humans are particularly good at navigating systems which have some analogy to things they
know - for example the use of the desktop metaphor is well established and works well in most
cultures. Icons are also useful, but shouldn’t be abused.

To summarize:

1. Ensure correlation between What-u-c and What-u-think

2. KISS

3. Analogy, metaphor and icons

Always remember to include the U in GUI.

1.3 Types of applications 3

1.2.1 Do’s and don’ts

The following tips are gleaned from various sources, and are provided to help you know what
you should do with your GUIs:

� Do follow standards - for example quit is the bottom item on the leftmost menu and so
on. In general people prefer new applications to follow established standards.

� Do be predictable and responsive - events should have an immediate response, and
should operate in well understood and predictable fashion.

� Do be flexible - the interface should admit a wide variation of allowable sequences, rather
than forcing a particular ordering. An undo facility is often helpful here.

� Don’t forget the user - it is important to consider the pyschological, physical, and social
attributes of people when designing user interfaces for them.

� Don’t forget the machine/environment - but watch for nasty implementation details
showing up in user interfaces.

� Dont assume things - like “the user will know how to ...” - provide informative help and
clear actions.

1.3 Types of applications

Not all applications benefit from a GUI. Consider the area of embedded control systems (such
as lift controllers, washing machine controllers) - these systems certainly have a user interface
which requires careful design, but not necessarily a GUI. In this course, we will not consider this
sort of interface.

However, there are many application areas that do benefit from a GUI:

� Immersive applications: - games, medical imaging, avatar based CSCW and so on.

� Office and business applications: - for use by anyone.

� Interactive control systems: - flight systems, remote control and so on.

In addition, a newer application area involves the use of visualization to examine large data sets:

� Data mining: - delving into some set of data.

Finally, there is the use of GUI in WAP enabled devices and on PDAs. This is a specialist topic,
which will not be covered in this course.

4 GUI concepts

1.4 Native environments/platforms

Early user interfaces were primitive things which barely disguised the underlying machines -
nearly always text-based, and fixed in operation.

Contrary to popular public opinion, “Windows” is not the only GUI window system. The Mac-
intosh system, and the UNIX X window system both predate Microsoft’s GUI system, and each
have interesting features that have yet to be added to “Windows”. For example the UNIX X
window system allows a clear separation between the display and the processing, whereas “Win-
dows” display and processing must be on the same machine.

By far the most common GUI windowed environment on the desktop is the one found in Win95/98,
and our programming API for it is known as Win32.

1.4.1 MacOS

It is interesting to see the development of the Macintosh window system from an early prototype
in 1979 through to its current incarnation - MacOSX.

Note that this first prototype used folder tabs in a way that is no longer done, and did not appear
to use icons. Within a year, the first commercial Macintosh system had the following interface:

1.4 Native environments/platforms 5

Macintosh operating systems have a single user, single display orientation, although the latest
version of the OS is built on top of a multi-user (UNIX) kernel. The latest version has some
interesting features - most notable is the application docking bar magnification feature:

1.4.2 X

The X window system2 is a sophisticated and well developed system which allows for multimedia
software and hardware components to be distributed around a network. At its simplest level, it
allows a program and its display to be on different computers.

The architectural view of X is a little peculiar. The designers view the display as central to the
system, and the software running on the display is called the X-server:

Clients

X display (server)

From the diagram, we can easily identify three essential components of X:

1. The X server - providing the high resolution graphical display(s3), keyboard and mouse.

2. The X protocol - providing standard communication methods between the distributed
software components.

3. X clients - programs with graphical display output, running on (perhaps) many machines.

2The system is called X, or the X window system. UNIX weenies insist that it is not called X-windows!
3Mechanism, not policy!

6 GUI concepts

There are two other components:

� The Window manager(s) - providing decorations around each window.
� The Display manager(s) - providing access to the system.

The display manager controls access to displays. The diagram shows a simple display manager
allowing selection of one of a number of hosts. When you select a host, you are presented with
a login window for that particular host.

or

There are of course other display managers, and login windows. There are also many different
window managers:

or

1.5 Non-native environments/platforms 7

1.4.3 Win32

Win32 is the 32 bit successor of the Win16 API - the original Windows Application Programming
Interface. Win32 is a generic name for 4 (slightly) different APIs - providing standard function
calls for accessing the GUI, file system, processes and so on. The Win32 API on Win95 is a
subset of those on WinNT, so applications written for Win95 should be portable to WinNT. The
reverse is not always true, but most WinNT applications can run on Win95/98.

The normal way for you to access Win32 functions is by using a precompiled library from a C
program. C programmers include a set of header files, and applications link at run time to the
Win32 DLLs.

The API for Win9X has three sections:

� KERNEL: - the low level kernel services in user32.dll.
� GDI: - Graphics Device Interface - drawing and printing in gdi32.dll.
� USER: - User Interface controls, windows and messaging services in kernel32.dll.

In Windows NT these services are kernel calls.

1.5 Non-native environments/platforms

The following systems can be used to provide a consistent environment that is independant of
the host operating systems:

� Java/Swing
� Web browser interfaces
� Thin client systems

Each is discussed in turn in the following sections.

1.5.1 Java

Sun Microsystem’s development of Java has always been done with portability issues in mind.
The JVM (Java Virtual Machine) is available on all platforms, and runs reasonably well on them.
There are some unresolved issues - particularly in the areas of security, fonts and efficiency - for
example the Blackdown distribution of Java for Linux is reputed to be about ten times slower
than Sun’s in some areas of its use.

8 GUI concepts

However - despite this - it is relatively easy to write a portable application - for delivery either as
an applet in a web page, or as a standalone application. The swing windowing toolkit is the Java
API for GUI development.

The all-java standalone application shown above is used for automated laboratory assessment of
programs.

1.5.2 Web browser interfaces

The first web servers provided static pages of hypertext and images, but fairly quickly, demand
led to the specification of a standard for active page generation - known as CGI - the Common
Gateway Interface.

CGI specifies how to pass arguments to a program on a server as part of the HTTP request.
The program might then look up a database before generating some HTML to pass back to the
browser. A CGI program can be any program which can accept command line arguments - Perl
is a common choice for writing these programs.

You should be aware that poorly constructed CGI scripts can result in security problems for the
server, and also that there is normally a process overhead for each script started. More recently
there have been various other web/interface techniques - for example the use of:

1. Java applets, to allow processing at the browser,

2. PHP (a server-side, cross-platform, HTML-embedded scripting language), or

3. ASP (a scripting environment for Microsoft Internet Information Server in which you can
combine HTML, scripts and reusable ActiveX server components).

In this course we will look at the use of Java in this role.

1.6 Widget sets 9

1.5.3 Thin client systems

A relatively recent development involves moving the X-server (or equivalent) from the machine
with the display to a larger machine, and then using a smaller computer to actually display the
data. Here is a thin client written in Java, running as an applet in a web page:

1.6 Widget sets

One definition of a widget is:

[possibly evoking “window gadget”] In graphical user interfaces, a combination
of a graphic symbol and some program code to perform a specific function. E.g.
a scroll-bar or button. Windowing systems usually provide widget libraries (sets)
containing commonly used widgets drawn in a certain style and with consistent be-
haviour.

When we use different widget sets, our applications have a slightly different look-and-feel.

10 GUI concepts

The following two screenshots are of the same application - the first linked with the Motif widget
set, and the second with the Athena Widget set - notice the differences in the look of the two
applications.

Motif:

Athena:

The ICS widget databook has a series of useful widgets to extend the basic Motif set, including
ones for bar graphs and so on.

1.7 Summary of topics 11

1.7 Summary of topics

In this module, we introduced the following topics:

� Rules of GUI
� Types of applications
� Windowing/GUI environments
� Widgets

Questions for Module 1

1. List three rules of things-to-avoid when developing GUI applications. For each rule, give
an example which demonstrates the problem.

2. State one way in which an application written for the X-window environment may be
different from an application written for a Win32 environment.

3. Find one example of a GUI application with a clear use of metaphor. Describe the appli-
cation and the metaphor.

4. Research: What is a DLL?

5. Research: Why is java considered more secure for use in a distributed environment than
(say) C?

6. Research: What is the principal use of PHP?

Further study

� The hall of shame:
http://www.iarchitect.com/mshame.htm.

� A brief history of HCI:
http://www.comp.nus.edu.sg/˜cs3283/ftp/BriefHistoryOfHCI.ps.gz.

12 GUI concepts

1.8 Sample Assignment - design

This is just a sample assignment. Assignment 1 for this semester’s CS3283 will be distributed in
class.

Task:

� Identify a GUI application which you think you can improve.
� Design an improvement.
� State how you would test the improvement.

Deliverables:

� A title page containing your name(s) and matriculation number(s).
� A two to five page document containing

– A description of the application - perhaps with screenshots.

– A description of that part of the application that needs improving, clearly stating why
you think it needs to be changed.

– A description of the improvement that you would make, clearly stating why you think
this change would be better.

– A testing methodology for the change that you want to make.

Note that this assignment does not require you to implement any change, just to describe one that
you would make.

