
Chapter 2
Design

B efore investigating more detailed processes of design, it is worthwhile to consider more
general issues related to design. For example, please remember that we often don’t bother
designing small things (a snack before lunch, the seating arrangement at the dinner table),

but for large things, we insist on prior design (an HDB apartment building, a bridge...). Suc-
cessful design approaches an art form, involving partially understood balancing tricks with many
competing constraints. The more design that you do, the better you get at it, but it is hard to
discover the points that result in a successful design.

User Interface (UI) design has one identifying characteristic that separates it from other design
areas - the principal concern is with the user of the system, not the constraints of the hardware.
This leads us to a common mindset for a UI designer - the UI designer must primarily consider
the human factor when designing systems.

2.1 How not to design

Consider the following UI for searching for property listings. It has some upsetting qualities.

13

14 Design

In addition, you might also consider the utility of regular expression pattern matching for files
(compared with the point and click interface). Why is “ls *.c” better than point and click?

In summary, I think very good rules to keep in mind are to:

� Avoid doing things just because you know how to do them.
� Make your designs be driven by requirements.

2.2 The design process

The design process involves both

� specification of the behaviour of a product, and
� specification of the detailed techniques used to implement the product.

In each area, there exist a range of tools and techniques that can benefit any software product,
although there is no clear agreement1 on which methodologies should be used. Having said this
though, it must be emphasized that design should be done, and it should mostly be done before
implementation. (I say mostly, because experience shows us that the design often undergoes an
iterative phase, where the design changes as more and more of the implementation is done.)

2.2.1 Role of designer

A software designer cannot operate in isolation. The software designer interacts with people
(the users and implementers), and as well has a responsibility to tie designs back to specific
requirements (from the original analysis), and specific constraints (from the implementers, and
users).

The design must be a readable, understandable, implementable document.

To achieve this, the designer uses abstraction extensively, at many different levels, and must be
prepared to argue for the use of a particular abstraction. The design of graphical interfaces is no
different.

The base abstraction found in GUIs that does not appear elsewhere is the iconic abstraction -
something is called iconic if it has some likeness to what it denotes. The simplest use of icons is
when we represent a text file on disk using an icon that looks like a sheet of paper:

1By contrast, many other engineering disciplines do have generally accepted techniques to be used.

2.2 The design process 15

Here there is a clear relationship between the icon and the text file. We also have higher level
abstractions - for example, the desktop and wastebasket metaphors. The designer needs to be-
come familiar with successful abstractions like these, so that they can be used and so that new
abstractions may be evaluated.

2.2.2 Building blocks of user interfaces

Beginning with the visible items, we have a range of widgets from the very simple iconic ones
(such as the button widget), through to more complex ones:

Button Testbox Label

Menu Checkbox Radiobutton

Scrollbar Graph Directory Tree

In addition, we have invisible components - for example we use container widgets to construct
more complex interfaces from a group of simpler ones:

Finally, you should remember sundry GUI components such as cursors, fonts, and colours, and
well understood GUI actions such as - drag-n-drop, cut-n-paste.

16 Design

2.2.3 Tool support, use cases and modelling

In general, the designer somehow imagines and proposes common scenarios2 for the use of the
software, and

1. checks to see if the scenarios are consistent, and complete,

2. tries out the scenarios on people to see if they work,

3. tests the scenarios and attempts to quantify their behaviour.

There are a range of tools we can bring to bear on these design problems. For example:

State-diagrams: - Used to specify and check the behaviour of a user interaction.

A simple older-style user interface for find-and-replace might involve first asking for the pattern
of text to find, and then for text to replace it with. A state-diagram would look like this:

Specify
Pattern Change

Specify

Doit!

Enter

Escape

Cancel

Escape

Enter

Enter

Note the states, and the labelled transitions. Consider this GUI-style find-and-replace:

The state-diagram for this might be quite complex - perhaps something like this:

Idle

Change
Specified

Pattern
specifiedSpecified

Do change

Pattern
specified

Change

unspec
unspec

unspec

unspec

spec

spec

unspec

spec

unspec

spec

Doit

Cancel

Cancel

Doit

2Scenarios=Use_cases. Use_cases=scenarios.

2.2 The design process 17

Note that in this state diagram, the states are different, and have different meaning - as are the
transitions - which are no longer single key presses - they may now involve complex functions.
This focus on detail related to the state of a dialog is not trivial. There is a well known example
of a poorly constructed dialog, that contributed to the death of cancer patients in the US see [4].

Modelling: - Used to demonstrate the UI, without actually implementing the core software.

Dan Bricklen’s demo program (a demo copy is available at http://www.brickin.com/) is worth
looking at for modelling a user interface. There is an amusing demo called chiapaint.

It is also relatively easy to model a new UI using Tcl/Tk.

2.2.4 OO technology and design

The principle features of OO technology [5] are as follows:

1. Abstraction,

2. Information hiding,

3. Inheritance,

4. Polymorphism, and

5. Genericity

The inheritance and polymorphism features of 00 technology have supplied a mechanism for
creating/updating and maintaining effective software libraries. These libraries contain generally
useful classes instead of parts of old projects, and it is a librarian’s duty to ensure the general-
ization3 of the classes.

Once a software library is in place, we can look in the library to find what we already have, and
what is ’close enough’. For example the ’people’ class may already exist, and we may decide
that a generic ’combiner’ class is close enough to ’booking area’ to warrant its use.

3For example: classes ’airline’, ’booking’, ’person’, ’flight’, ’batchmode’ rather than class ’batch-
mode_airline_booking_system’.

18 Design

The next stop is to detail the features of each of the new classes. All of this is design, and is
almost effortless - if we start detailing features and find it is ’all wrong’, we can just step back to
re-arranging/factoring the classes.

2.3 GUI specification and design

GUI design has to meld four possibly conflicting elements:

1. Software model - the structure of our data and overall architecture of the software devel-
oped during the normal system design process.

2. User profile - the types of targetted users of the product, with their specific characteristics.

3. Product perception - the mental image developed by an end user in relation to the use of
the GUI product.

4. Product image - the specification of the GUI - screenshots, descriptions or specifications
of it’s behaviour.

In general, a GUI is successful when the product perception matches the product image.

Pressman’s [6] principles for general software specifications need some modification for visual-
ization and GUI specification. We need not, for instance, concern ourselves with “the context in
which the software inter-operates with other system components”. Our concern is to:

Develop a functional and behavioural response specification in terms of its cognitive
aspects.

The functional and behavioural response specification is turned inside-out from a normal soft-
ware specification. With a software behavioural model, we start with an analysis of states, events
and actions, and specify the expected views as a result. With GUI specification, our orientation
is to start with the views, and specify the states, events and actions associated with those views.

2.3.1 A basis for GUI specification and design

One of the most characteristic elements of many GUI programs is the use of the event-driven
software architecture. When the designer adopts this paradigm, the GUI program is viewed as a
series of response routines for particular events.

In addition, the software may require asynchronously running components. An implementation
may use a number of threads for the asynchronous tasks, along with a set of event response rou-
tines. For example, a word processor may asynchronously spell-check a document, underlining
questionable words.

2.3 GUI specification and design 19

A possible outline structure for a GUI design document might be:

1. User requirement

2. Environment

(a) Software constraints

(b) Other constraints

3. Interface design

(a) Overview

(b) Interface description

i. Prototype screens
ii. Functional specifications

iii. Behavioural specifications

4. Testing methodology

Note the example of a design document along these lines in Appendix A.

2.3.2 Formal GUI design

Some aspects of GUI design can be easily formalized. For example, in Section 2.2.3 we saw
the state-diagram used to define and describe the interaction behaviour of a user interface. Z,
a specification language, has been used to formally specify complex GUI interactions. There
are supporting Z tools which can then automatically test the specification for completeness and
correctness with respect to some more abstract specification.

More details may be found in [3], and the handout [1], found at

http://www.cs.virginia.edu/˜jck/publications/zum.97.pdf

It describes the use of formal specification tools and notations in constructing the interface to a
nuclear reactor.

2.3.3 Examples of GUI designs

Here are some examples of different designs for similar things, with some brief comparative
comments:

20 Design

Dialog boxes for find-and-replace:

This dialog box in the LYX word processor was confusing the first time I tried it:

This one is from nedit. The check buttons are a bit confusing, but the up arrow recall of previous
strings works well.

This is the Word dialog box.

2.3 GUI specification and design 21

File system navigation:

The familiar win98 file manager borrows the basic concept from MAC file managers, and is quite
easy to use.

A more explicit directory tree style file manager. The expanding arrow tree list on the left is a
nice feature.

SGI have a (freeware) file manager called fsn, which briefy appeared in the movie “Jurassic
Park”. It has a large computational overhead, but is fun to use.

22 Design

2.4 3D vizualization specification and design

Visualization design has a similar structure to GUI design - a difference being the focus on the
use of analogy.

2.4.1 A basis for visualization specification and design

Eick [2] proposes the following guidelines as a basis for engineering effective visualizations:

1. Focus the visualization on task-specific user needs.

2. Use a whole-database overview display.

3. Encode the data using colour, shape, size, position.

4. Use drill-down, filters and multiple linked views in a direct manipulation user interface.

5. Use smooth animation to show the evolution of time varying data.

With visualization specification, our orientation is again to start with the views, and specify the
states, events and actions associated with those views. There is an example of design along these
lines in Appendix B. Here is a possible outline for a visualization specification:

1. User requirement

2. Environment

(a) Software constraints
(b) Other constraints

3. Interface design

(a) Overview
(b) Interface description

i. Drill-down and other displays
ii. Encoding

4. Testing methodologies

2.4.2 Examples of visualization design

There are many examples of data visualizations, and I have just taken some from the world of
network management - starting from simple graphical displays through to 3D images.

2.4 3D vizualization specification and design 23

Graphs and diagramming:

Tkined4 is a freely available SNMP management station. It centers around an effective graphical
network editor which can be used to diagram a network.

Unusual display - compact visualization:

Etherman is a medium sized monolithic application which runs on a UNIX host.

When running, etherman collects and displays graphically the ethernet traffic on the directly
connected network. In the figure the display shows several hosts communicating with a range of
protocols. A host to the bottom right of the display is generating a lot of traffic.

Etherman uses a visual metaphor associated with an easily understood model involving fluid,
tanks and fluid flow. It gains leverage from human cognition of the behaviour of simple physical
models.

4http://wwwhome.cs.utwente.nl/˜schoenw/scotty/

24 Design

3D graph:

Nettop is a graphical display from SGI which indicates network traffic flow between systems.
The display presents 3D bar graphs of network traffic. It can show the top sources and destina-
tions of traffic on the network, or it can show the sources and destinations of your choice. It can
also show the traffic on nodes, each with its filter.

Abstract 3D view - SeeNet:

SeeNet was developed as part of a continual research effort in network data analysis at AT&T.

eickrab eick

> <

Half Lines

Both Active

Show Nodes

Outside OK

Help

All On

All Off

Zoom

Unzoom

Variables--> <--
weights 35

-2
1

29
56

84
111

20.00 111.00
weights

Short

Long

Thin

Wide

THYST-L

TheDailyQuote

XspcDlv

ballman

bdewbank

bld

blewett

ches

cope

dep

dla

dorene

ees

eick

em1

express

exptools

gen

hartman
hastings

info-hol-request

jcr

johnson

kss

kwc

laddlas

lda

maa

mckinzie

mferber

ni-fwd

north

otto

pkohorn

postmaster

rab

ralph

root

sml-redistribution-request

steffen

techlib
televi

tmd

tuckey

uucp

votta

wth

ycw

SeeNet is in daily use by AT&T engineers, and has many user interfaces - including this spring-
tension 3D model, shown above. This figure shows an analysis of e-mail usage, and indicates
that the user at the center (Hastings) is the e-mail hub of the department.

2.4 3D vizualization specification and design 25

Abstract 3D view - Flodar platter display:

The flodar (Flow Radar) system [7] was developed at the National Security Agency (NSA) for
continuous monitoring of large numbers of NSA servers. The designers have used a web based
system for the display, interrogating a database that collects data asynchronously from remote
agents.

In the platter display, over a 24 hour period, cylinders representing servers move to the center of
the platter. When a server signals, its cylinder moves to the outside of the platter. In this way
servers that require attention move to the center of the platter.

The principal use of flodar is to alert operators to servers that have not signalled the database in
a long time.

26 Design

3D world-view:

In this example (again from the flodar system) we see a building/locational view - the servers
are represented by cylinders. When the server signals the database, the cylinders are made nearly
transparent. As the servers age, they become more opaque.

2.5 Summary of topics 27

2.5 Summary of topics

In this module, we introduced the following topics:

� The designer’s mindset
� Specification and design, tools and methods
� Examples of successful designs

Questions for Module 2

1. Give at least four other widgets not mentioned in section 2.2.2.

2. Give one other well-understood GUI action not mentioned in section 2.2.2.

3. Differentiate between radiobuttons and checkboxes. When would you use a radiobutton?
When would you use a checkbox?

4. Describe how you might attempt to evaluate two competing designs.

5. Research: Study a visualization application which has an abstract view - evaluate the ab-
straction - is it successful or not?

6. Consider the 3D graph shown in the nettop application. Can you think of another use for
this visualization?

7. Briefly outline a specification for a GUI application intended to manage a room booking
system at NUS.

8. Briefly outline a specification for a visualization application intended to manage the flow
of containers through the port in Singapore.

Further study

� Visualization:
http://www2.iicm.edu/ivis/ivis.pdf.

� Formal specification:
http://www.comp.nus.edu.sg/˜cs3283/ftp/ObjectZToSpecifyWebInterface.ps.gz,

http://www.cs.virginia.edu/˜jck/publications/zum.97.pdf,
http://www.comp.nus.edu.sg/˜cs3283/ftp/SurveyOfUILanguages.ps.gz.

� Pressman [6] on UI design pp.395-406.

28 Design

2.6 Sample assignment 2 - design/prototype

Task:

Your task is to develop the design of a GUI interface for a system for room booking at NUS. The
system should provide for logging in, selecting a room or choice of rooms, a timeslot or choice
of timeslots, submitting a request and displaying the results.

Deliverables:

� A title page containing your name and matriculation number.
� A five to ten page design document containing

– A brief summary of the user requirement, and environment

– An overview of the interface design

– A detailed description of the interface design, including
� Prototype screens
� Functional specifications
� Behavioural specifications

– A testing methodology for the interface.

Note that this assignment does not require you to implement the application, just to design one.

