
Chapter 7
Web interfaces

A common feature of many modern GUI applications is that there is a strong desire to
deliver the applications via web browsers. MSIE and Navigator have differences in their
implementation of (what should be) standard extensions such as Java, and so any web based

developments need to be tested on any target platforms.

However - its not really that hard to write CGI/ PHP and/or Java applications that work on all
platforms. In this section we will briefly look at CGI, PHP and Java.

7.1 CGI - Common Gateway Interface

CGI is a standard for helping web servers run external programs and return dynamic web pages.

For example, a simple dynamic web page might return the current date and time, calculated by
running the ’date’ program, and formatting the results as a web page. The following script
shows the idea:

 #!/bin/sh

 cat <<EOM1
 Content−type: text/html

 <HTML><HEAD>
 <TITLE>Output of data in HTML from CGI script</TITLE>
 </HEAD><BODY>
 <H1>Date:</H1>
 EOM1
 date
 cat <<EOM2
 </BODY></HTML>
 EOM2

CODE LISTING mydate.cgi

73

74 Web interfaces

When this script is placed in the directory public_cgi in your home directory on one of the
UNIX systems, then you may refer to

http://www-cgi.comp.nus.edu.sg:8000/~yourid/mydate.cgi

and you will get the following display:

This is of course a trivial example, but shows the fundamental idea of running a script, to get
dynamic content in a web page. In this case, the script is not passed any data from the client
browser - it just runs the shell /bin/sh and the date program on the server.

Note that there is no requirement for your CGI program to be a shell script. You may use any
suitable scripting language, or compiled programs, and perl is very commonly used in this role.
The most important thing to remember is that whatever your CGI program does, it should not
take too long to process.

7.1 CGI - Common Gateway Interface 75

7.1.1 CGI environment variables

To pass parameters to CGI programs, environment variables are used. The following perl script
can display all the enviroment variables passed to a CGI program:

#!/usr/local/bin/perl

print "Content−type: text/html\n\n";
print <<EndOfHTML;
<html><head><title>Print Environment</title></head>
<body>
EndOfHTML

foreach $key (sort(keys %ENV)) {
 print "$key = $ENV{$key}
\n";
}

print "</body></html>";

CODE LISTING env.cgi

When this script is run, we get something like the following. This may go some way towards
explaining to you how some systems know which web browser you are using!

DOCUMENT_ROOT = /usr/local/apache/htdocs
GATEWAY_INTERFACE = CGI/1.1
HTTP_ACCEPT = image/gif, image/x-
xbitmap, image/jpeg, image/pjpeg, image/png, */*
HTTP_ACCEPT_CHARSET = iso-8859-1,*,utf-8
HTTP_ACCEPT_ENCODING = gzip
HTTP_ACCEPT_LANGUAGE = en
HTTP_CONNECTION = Keep-Alive
HTTP_HOST = www-cgi.comp.nus.edu.sg:8000
HTTP_REFERER = http://www-cgi.comp.nus.edu.sg:8000/~hugh/
HTTP_USER_AGENT = Mozilla/4.79 [en] (X11; U; Linux 2.2.16 i686)
PATH = /usr/local/bin:/usr/bin:/bin:/usr/local/php/bin
QUERY_STRING =
REMOTE_ADDR = 137.132.90.155
REMOTE_HOST = dhcp-hugh.ddns.comp.nus.edu.sg
REMOTE_PORT = 3343
REQUEST_METHOD = GET
REQUEST_URI = /~hugh/env.cgi
SCRIPT_FILENAME = /home/staff/hugh/public_cgi/env.cgi
SCRIPT_NAME = /~hugh/env.cgi
SERVER_ADDR = 137.132.90.7
SERVER_ADMIN = websp@comp.nus.edu.sg
SERVER_NAME = www-cgi.comp.nus.edu.sg
SERVER_PORT = 8000
SERVER_PROTOCOL = HTTP/1.0
SERVER_SOFTWARE = Apache/1.3.19 (Unix) PHP/4.0.5 mod_perl/1.25
TZ = Singapore

The bold strings are the names of the environment variables passed to the CGI program. To the
right of the name is the value of that environment variable.

76 Web interfaces

7.1.2 CGI forms

CGI is commonly used for processing simple form-based applications. That is, the client display
has a form, and the user keys-in, or selects items in the form, which is then submitted to the CGI
program for processing. The principal mechanism for passing small form contents to the CGI
program uses environment variables, which are passed to the called CGI program.

The form contents are found inside an environment variable called QUERY_STRING, as a series
of name/value pairs. This mechanism is known as the GET mechanism, and a typical URL
would look like this:

http://www-cgi.comp.nus.edu.sg:8000/~yourid/myform.cgi?name1=value1&name2=value2

An alternative mechanism is the POST mechanism, in which the STDIN of the CGI program is
used to process the form data. A simple example of a form based web page:

<html><head>Simple form</head>
<body>
<form action="env.cgi" method="GET">
 First Name: <input type="text" name="First" size=30><p>
 Last Name: <input type="text" name="Last" size=30><p>
 <select name="Home">
 <option>Singapore <option>Malaysia
 <option>Indonesia <option>New Zealand
 <option>The rest of the world!
 </select>
 <input type="submit">
</form>
</body></html>

CODE LISTING form.html

This produces a page that looks like this:

When the form is submitted, the QUERY_STRING looks like this:

QUERY_STRING = First=Hugh&Last=Anderson&Home=New+Zealand

Within a CGI program, this series of name-value pairs may be used to return a dynamic web
page based on this form data. Perl is a particularly useful language to use in this context, as it
has powerful operators form managing strings, and the QUERY_STRING can be split quickly
into its component parts. There are security issues with unrestricted CGI programs - since they
run powerful programs (like perl and csh) with arbitrary parameters, they may be a source of
(hacker) intrusion. It is for this reason that CGI usage is restricted here at NUS.

7.2 PHP 77

7.2 PHP

PHP is a server-side scripting language that is embedded in your web pages. It looks very like
standard HTML scripts, but when a client browser queries a PHP enhanced web page, the server
automatically interprets the PHP, and then sends back an ordinary HTML page. There are no
enhancements needed for browsers to access PHP web pages.

The two tags <?php and ?> start and end a PHP script, and identify a PHP code segment. The
PHP code itself is a reasonably powerful programming language similar to Java, C and Perl, with
functions, variables and so on.

PHP stands for PHP - Hypertext Preprocessor, a recursive acronym (like GNU - Gnu’s Not
UNIX), and is a generally useful HTML/server preprocessor. However it is particularly useful if
you wish your web pages to access databases. It is common to pair up PHP with MySQL, but
PHP is not limited to one database type. It may be used with any of the commercial databases.
For example if you wish to use PHP to access a Microsoft SQL server, you can install the ODBC
support in the server machine, and access the server directly.

Here is sample PHP code embedded in a PHP-enhanced web page. It shows PHP connection to
a MySQL server, selection of a database and an SQL query:

<?php
...
mysql_pconnect("host","user","password")

or die("Unable to connect to SQL server");
mysql_select_db("dbasename")

or die("Unable to select database");
$numguests = mysql_query("SELECT COUNT(*) FROM guests")

or die("Select Failed!");
...

?>

This may all be integrated with standard HTML and form-based web pages to construct a GUI.
PHP suffers less from the security issue than perl or csh CGI scripts do. After writing this
sentence I went to see what the latest security issues with PHP were, and discovered that recently
there has been a major loophole discovered in PHP POST upload code:

Each of the flaws could allow an attacker to execute arbitrary code on the victim’s
system.

The exploit appers to have been disovered before any use of it, so assuming you have a relatively
recent installation of PHP, you should in general have less security worries than with CGI scripts.

78 Web interfaces

7.3 Java enhanced

In Section 6.5 we saw a very simple hello-world Java applet inserted in a web page. Here is a
little Java applet for a Lissajous figure:

/* @(#)Lissajous.java
 * Original version was written in 0.4 95/04/09
 * by Hugh Anderson for HotJava browser.
 *
 * Updated by L. Gladney to Java 1.0 JDK on 4/13/97.
 *
 * Patrick Chan (chan@scndprsn.Eng.Sun.COM) has suggested that it
 * would be nice if every point had a different display, so mouse
 * X motion now controls the ratio of frequencies, and mouse Y motion
 * controls the amplitude. */

import java.applet.Applet;
import java.awt.*;

public class Lissajous extends Applet implements Runnable {
 Thread animate= null;
 double pi=3.14159265359;
 int fx=50;
 int fy=100;
 int diffx=0;
 int amp=50,phase=0; // amplitude, phase
 int delay = 50; // speed set by length
 // of sleep between refreshes
 public void init() {
 resize(200, 200); // resize to fixed width,height
 }

 public void paint(Graphics g) {
 int X,Y,YY=0,lastx=0,lasty=0,temp=0,rev=0;
 g.drawRect(0, 0, size().width − 1, size().height − 1); // outline
 if (fy < fx) { // frequency
 temp = fx;
 fx = fy;
 fy = temp;
 rev = 1;
 }
 for (int x = 0 ; x <= 360 ; x += 4) { // loop
 X = (int) (amp*Math.sin(x*2.0*pi/360.0)); // x pos
 YY = (x*fy/fx)+phase;
 Y = (int) (amp*Math.sin(YY*2.0*pi/360.0));
 if (x==0) { lastx=X; lasty=Y; }
 if (rev==1) { g.drawLine(lastx+100,lasty+100,X+100,Y+100); }
 else { g.drawLine(lasty+100,lastx+100,Y+100,X+100); }
 lastx=X;
 lasty=Y;
 }
 if (rev==1) {
 temp=fx;
 fx = fy;
 fy = temp;
 }
 phase = YY;
 /* Fix an error ... phase shouldn’t increase forever..... */
 if (phase < 0) { phase += 360; };
 if (phase >= 360) { phase −= 360; };
 g.drawString(fx + " :" + fy,10,20);
 }

CODE LISTING Lissajous1.java

7.3 Java enhanced 79

Here is the rest of the code...

 public void run() {
 while (true) {
 repaint();

 try { Thread.currentThread().sleep(delay); // delay
 }
 catch (Exception e) { };

 }
 }

 public void start() {
 if (animate == null) {
 animate = new Thread(this);
 animate.start();
 }
 }
 public void stop() {
 if (animate != null) {
 animate.stop();
 animate = null;
 }
 }

 public boolean mouseDown(Event e, int x, int y) {
 Graphics gc;
 gc = getGraphics();

 diffx = fx−x;
 System.out.println(" Got a mouse event at " + x + " , " + y);

return true;
 }

 public boolean mouseDrag(Event e, int x, int y) {
 fx = x+diffx;
 if (fx <= 0) { fx = 1; };
 amp = y;

return true;
 }

 public String getAppletInfo() {
 return " Lissajous by Hugh Anderson/Larry Gladney ";
 }

 public String[][] getParameterInfo() {
 String [][] info = {
 {" delay "," int ", " delay, default=50"}
 };
 return info;
 }

}

CODE LISTING Lissajous2.java

80 Web interfaces

I wrote this code soon after the first Java language was made public, and had forgotten about it
until last week, when I went looking for an applet, and found my name on it! This code may be
found at

http://olddept.physics.upenn.edu/courses/gladney/minicourse/lectures/lecture2.html

or locally at

http://www.comp.nus.edu.sg/~hugh/Lissajous/Lissajous.html

This produces a page that looks like this:

7.4 Summary of topics 81

7.4 Summary of topics

In this module, we introduced the following topics:

� Web-based application architectures
� CGI, PHP and Java

Sample questions for this module

1. (Research) Make up a simple CGI form, similar to the one given on page 75, which uses
the POST method for reading the data, and prints out the three fields.

2. (Research) Make up a simple PHP processed form, similar to the one given on page 76,
and which prints out the three fields.

3. Examine the Lissajous.java code. What is the function of the diffx variable?

Further study

� http://php.net

82 Web interfaces

7.5 Sample Assignment 4 - Implementation

Task:

Your task is to implement and document a multi-user simple text editor. By this I mean that
you and other people may safely simultaneously edit a single file (perhaps using a shared file
system). Note that there is no one correct way of doing this, and feel free to experiment with
different approaches.

You may re-use existing simple text editor code found in many introductory Java/Swing tutorials
if you wish, but the extensions to make it multi-user must be your own.

Here are brief descriptions of possible approaches to this problem:

1. (Simplest) Each user edits their own copy of the file. When the user saves the file, other
users are notified that the original file has changed, and given a choice to load the new
changed file, or to just continue.

2. (Medium) Each user edits a part of the file, chosen when they open the file from the re-
maining editable parts (For example, lines 1-100 for user 1, lines 101-200 for user 2).
When the user saves the (part) of the file, other users are notified that the original file has
changed, and their programs automatically load the new changed parts.

3. (Very tricky) Each user edits their own copy of the file. As changes are made, all users
screens are updated.

Feel free to dream up more advanced shared editing schemes. Note that since communication
between the programs may be tricky, I suggest your programs communicate through another
shared file.

Deliverables:

� A title page containing your names and matriculation numbers.
� A ten to twenty page document containing

– A brief summary and justification of the overall strategy used for shared editting
- perhaps with a state diagram describing the states of each edit program, with an
argument as to why your program is “safe”.

– An overview of the interface design

– A user manual for the interface

� A disk containing the code, with a (small) README file.

Chapter 8
Visualization

T he visualization of data using GUI applications should be distinguished from other computer-
graphics concerns. In visualization, we are concerned with exploration of data, with its at-
tendant concerns of encoding strategies and so on. In computer-graphics, we may be more

concerned with rendering techniques.

Before exploring the implementation of a 3D visualization, we look at some aspects of the con-
text within which the visualization is to be used.

8.1 The use of 3D

A successful visual metaphor has some analog with real-world physics. Some studies suggest
that a 10-fold improvement in item density can be achieved in using three dimensional displays.

The etherman display has proven effective in observation of networks with 50 or less nodes,
but becomes cluttered and unusable with more nodes on-screen. By extending the display into
the third dimension, it immediately becomes clearer. Our familiarity with spatial location allows
us to understand that objects further away will be smaller, and this reduces the visual clutter.
However if a far away object increases in size, we immediately notice, and can rotate the display
to observe more closely. We notice even if the far away object is still smaller (in screen real-
estate terms) than closer objects. This human cognitive behaviour becomes apparent as soon
as sufficient visual cues have been given to persuade the observer that the display is in three
dimensions.

For example: Figure 8.1 shows the output of an original program1 to display tasks active on a
UNIX machine. The size of the spheres indicate the amount of memory used by each process,
the colour represents the owner. This display can be rotated and used to examine activity in a
way unattainable using standard system process viewing tools. The display has over 100 visible
nodes, but it is still easy to identify and investigate individual nodes.

1http://opo.usp.ac.fj/˜hugh/Public/Viz/ThesisWork/processes1

83

84 Visualization

Figure 8.1: Display of tasks in a multi-tasking environment.

8.2 OpenGL

OpenGL was originally the SGI in-house graphics system, but now is the most widely accepted
graphics standard, with chip, API and OS support for all platforms. It is possible to code directly
using the OpenGL API, but more normal to use a toolkit which encapsulates some abstraction,
built on top of OpenGL calls.

Open GL is standard on all UNIXes and all versions of Windows since Win95. The API supports
functions for rendering, buffering, anti-aliasing, shading, colouring, texture-mapping, a display
list, Z-buffering and so on. To give the flavour of raw OpenGL programming, here is a small
application:

8.3 Java 3D, VTK - toolkits for 3D 85

 #include <GL/glut.h>

 void
 Teapot (long grid)
 {
 /* ... code to construct drawlist of teapot here. */
 }

 static void
 Init (void)
 {
 glEnable (GL_DEPTH_TEST);
 glLightModelfv (GL_LIGHT_MODEL_LOCAL_VIEWER, local_view);
 /* Lighting model, materials... */
 }

 static void
 SpecialKey (int key, int x, int y)
 {
 switch (key) {
 case GLUT_KEY_UP:
 rotX −= 20.0;
 glutPostRedisplay ();
 break;
 /* Move in other directions */
 }
 }

 static void
 Draw (void)
 {
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix ();
 /* ... translations ... */
 glCallList (teaList);
 glPopMatrix ();
 glutSwapBuffers ();
 }

 int
 main (int argc, char **argv)
 {
 glutInit (&argc, argv);
 type = GLUT_RGB | GLUT_DEPTH;
 type |= (doubleBuffer) ? GLUT_DOUBLE : GLUT_SINGLE;
 glutInitDisplayMode (type);
 glutInitWindowSize (300, 300);
 glutCreateWindow (" TeaPot");
 Init ();
 glutReshapeFunc (Reshape);
 glutKeyboardFunc (Key);
 glutSpecialFunc (SpecialKey);
 glutDisplayFunc (Draw);
 glutMainLoop ();
 }

CODE LISTING teapot.c

8.3 Java 3D, VTK - toolkits for 3D

These systems are 3D OO toolkits embedded in Java and C++ respectively. The Java 3D appli-
cation programming interface (API) provides a set of object-oriented interfaces that support a
simple, high-level programming model.

The Visualization ToolKit (VTK) is an open source OO software system for 3D consisting of a
C++ class library, and several interface layers for Tcl/Tk, Java, and Python. VTK has a wide
variety of visualization and graphical functions, and has been installed and tested on both UNIX
and Windows.

86 Visualization

8.4 Case study - network traffic application

A user-requirement specification for a network traffic application may begin with something like:

This visualization is to assist network managers in planning and monitoring their
networks. It allows interactive exploration of network datalink traffic, and is in-
tended for use both for visualization of immediate-mode (real-time) data, and for
visualization of historical data. (The visualization is the same in each case, except
that time only travels forward in the immediate mode.)

The visualization will help answer questions such as the following:

� Which segments carry the most traffic?
� Which sections of the network are down?
� At what times, and where do traffic bottlenecks occur?
� What is the line utilization for different lines at different times?
� What types of traffic are used most?
� Would routing or switching be effective here?

For this network traffic application, the following elements are represented:

� Background: - to convince the viewer that the display is three dimensional...
� Nodes: - a computer, a network device...
� Traffic: - the amount of traffic flow...
� Protocol: - the type of traffic...
� Errors: - errors in traffic could be further traffic protocols...
� Trends: - for changes over time...
� Association: - for network insights...

8.4.1 Node representation

In our chosen context, the nodes represent computers or network components such as hubs,
routers, bridges or switches. In locational or representational displays we may want to differen-
tiate between the type of node, but in the more abstract displays, there may be no need to do
this.

In Figure 8.2 we see a range of possible options for more concrete representations of nodes.

The computer represented in Figure 8.2(a) has about 2000 flat triangular surfaces (some of them
hidden). If we were visualizing a campus with (say) 500 computers using this representation,

8.4 Case study - network traffic application 87

(a) 2000 polygons (b) 84 polygons (c) 14 polygons

Figure 8.2: Concrete node representations.

Machine Rendering speed Computer (a) Computer (b) Computer (c)

Graphics Workstation 485,000
�

/sec 0.485 frames/sec 11.5 frames/sec 69 frames/sec

PC1 30,000
�

/sec 0.03 frames/sec 0.71 frames/sec 4.3 frames/sec

PC2 11,000
�

/sec 0.011 frames/sec 0.26 frames/sec 1.6 frames/sec

Table 8.1: Workstation redraw speed.

then our rastering engine has to recalculate the positions and shading of 1,000,000 polygons
each time it redraws the screen. This will happen even if the item is so far away that it only takes
up a single pixel on the screen.

A typical modern hardware rastering engine can calculate 485,000 shaded � /sec (triangles per
second), and hence our screen refresh rate would be about half a frame per second, giving a
jerky look. By contrast, the computer shown in Figure 8.2(c) has only 14 flat triangular surfaces,
giving a frame rate in excess of 70 frames per second.

Standard PCs often come with graphics cards that support pixel movement on screen, but their
overall performance in shaded � /sec is normally considerably below 485,000 polygons per sec-
ond. Table 8.1 gives the resultant frame rates for displaying onscreen 500 of the node represen-
tations in Figure 8.2.

It is clear from this table that if we wish our visualizations to be viewed on a range of platforms,
we must choose our node representations carefully to minimize rendering time.

Some representation methods for three dimensional objects allow different levels of detail. In
the VRML specification, a single object may be represented in different ways depending on how
much screen real estate it uses up. If the object is near you, it could be represented in detail, but
if it is a long way away, the representation could be as simple as a coloured square.

88 Visualization

The following VRML code represents a cone in two ways using an LOD (Level Of Detail) node.
If the distance from the user to the object is smaller than the first range value specified, then the
first version is drawn. If the distance is greater than the last range specified, the last version is
drawn.

#VRML V2.0 utf8
LOD {

range [20]
level [

#full detail 16 sided cone
Shape{

appearance Appearance { material Material { diffuseColor 1.0 1.0 1.0}}
geometry Extrusion{

crossSection [-1 0, 0 0, -1 -2 -1 0]
spine [1 0 0 , 0.866 0 0.5, 0.5 0 0.866, 0 0 1 , -0.5 0 0.866, -

0.866 0 0.5,
-1 0 0, -0.866 0 -0.5, -0.5 0 -0.866, 0 0 -1 ,0.5 0 -0.866,
0.866 0 -0.5, 1 0 0]

}
}
#low detail 4 sided cone, actually a pyramid
Shape{

appearance Appearance { material Material { diffuseColor 1.0 1.0 1.0}}
geometry Extrusion{

crossSection [-1 0, 0 0, -1 -2 -1 0]
spine [1 0 0 , 0 0 1, -1 0 0, 0 0 -1 , 1 0 0]

}
}

]
}

8.4.2 Traffic and protocol representation

A simple immediate way to represent traffic between two nodes is to just draw a line between
them. The nature of network communication on a typical Local Area Network (LAN) is such
that the resultant lattice is likely to be relatively sparse.

For example: at the datalink layer, on average, a workstation at any one time may only be
communicating with six or seven other datalink addresses - two broadcast addresses, (say) two
file servers, a WINS or DNS server. and a proxy. So - rather than having a lattice with �

���
��

interconnections, we have
���	��
���

interconnections, where
�

is some small integer. Even so, a
lattice with 500 nodes may have 3,000 interconnections and may look jumbled.

A line indicates source and destination, but not the amount of traffic. Three systems for this
purpose have been examined:

1. Colour coding (black through red to white for maximum traffic),

2. Line width, and

3. The length of partial lines, as discussed in Eick’s papers.

Using a linear increase in the line width appears most effective, although it does increase clutter.
It also leaves the colour information free for use in some other encoding. The linear scale needs a
sensible maximum, and experimentation has shown that a maximum width should be equivalent
to the size of the node.

A simple line or cylinder also does not tell which way the traffic is flowing. We evaluated the
following cues by modeling them in geomview, a geometrical modelling package.

8.4 Case study - network traffic application 89

Figure 8.3: Partial length representation of bi-directional traffic.

1. Separate arrows

2. Partial lengths

In Figure 8.3 we see the traffic between two computers, the size of the cylinder between the ma-
chines indicating the total amount of network traffic, and the two colours indicating the relative
amounts of traffic going each way. The nodes and cylinders themselves are coloured according
to the dominant protocol type.

8.4.3 Trend representation

Trends are sometimes difficult to find in large sets of data such as found in our application. Once
an examination of a visualization has indicated that a trend may be possible, it is normally easy
to frame the questions needed to verify the trend.

� “It looks like HTTP usage on these segments is increasing...”
(� Plot HTTP usage for the segment machines versus time).

� “It looks like HTTP usage is increasing when FTP usage is decreasing...”
(� Plot HTTP and (1-FTP) versus time).

Graphing continues to be the pre-eminent way of representing trends and the role of visualization
is to assist in finding the trends.

The four-dimensional visualization methods outlined and demonstrated by Olaf Holt and Nils
McCarthy in NDdemo (the fourth dimension being explicit time) could perhaps be used in trend
analysis, but the visualization is a little hard to use.

A final method is to attempt to encode previous visualizations on-top-of the current one (but
perhaps semi-transparent) - the idea here is one of visual echoes. In only some circumstances
can this be successful. There are two options:

1. Echoes are fixed on the screen, and we can move the visualization away from them, leaving
a trail like this:
In the worst case though, we have just ended up using one of our three display dimensions
for “time”.

90 Visualization

Figure 8.4: Locational view

2. Semi-transparent echoes are co-located with the visualization. In this case, we can only
show some of the history. We can show a reducing item, but not an increasing one.

8.4.4 Display

In Figure 8.4, we see an early locational view showing the fixed components of the visualization,
and modeled using geomview. It shows nodes for the computers, floor plans for the buildings,
and a transparent roof. The display uses the normal 3D navigation tools for adjustment. From the
display it is easy to identify the location of machines, and the display should be efficient enough
to support display and manipulation of the entire network (with 500 machines as a suitable goal),
and - yes - the computers are floating in mid air. (Since we are concerned with efficiency we
choose the simplest understandable visualization, and tables just become extra polygons to draw).

The visualizing tool supports rotation and translation of the display, so that the observer can eas-
ily focus on regions of interest. Suitable systems are found in the CosmoPlayer VRML viewer,
and in geomview. Note that this visualization is not dependant on the navigation or implemen-
tation method.

Cables and network infrastructure are not marked on the display, but the display does support
an aggregation-by-rule construct. This aggregation can be used to associate machines all on the
same segment, or all used by the same department.

8.4 Case study - network traffic application 91

Aggregation Nodes

Figure 8.5: Aggregation nodes

The components are chosen to be the best minimum complexity representation consistent with
fast updates. The frame update speed for the most complex display is better than 2 frames per
second.

Each node or aggregation in the overview display is clickable to turn it off or on. If a node is
turned off, its traffic no longer is displayed (either directly or as part of some aggregated traffic).
If an aggregation is turned off, any existing traffic displays to its nodes are removed. This facility
is used to allow fast reduction of visual clutter.

Aggregation nodes also have an aggregation switch, which allows them to combine all traffic for
subsidiary nodes. When this switch is on, lines connect the aggregation to its subsidiary nodes.

The aggregation node floats above its associated nodes. In Figure 8.5, we see two aggregation
nodes, with the one on the right aggregating traffic to and from all its subsidiary nodes. All
traffic to or from these nodes is displayed going to the aggregation node. The other nodes are not
aggregated, and display traffic directly.

Each node or aggregation in the overview display is clickable to identify specific information
about that node. This information does not replace the display, but appears in a separate window.
Initially this information may just be textual information such as the name of the node along
with traffic totals, but eventually, it is expected that the drill-down display will be the metaphor
display specified elsewhere, showing only the selected node in 3D, along with any associated
nodes.

92 Visualization

Operating System Web Browser VRML 2.0 Plugin

IRIX Navigator 3.01S CosmoPlayer 1.0.2b3 or later

Communicator 4.04 CosmoPlayer 1.0.2b3 or later

Communicator 4.07 CosmoPlayer 2.1 beta

Macintosh Communicator 4.04 CosmoPlayer 2.1 or later

WIN32 Navigator 3.01 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

Communicator 4.04 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

MSIE 3.0 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

MSIE 4.0 CosmoPlayer 1.0 beta 3 or Intervista WorldView 2.0 or later

Table 8.2: Systems which support the EAI.

8.5 3D VRML visualization implementation

The VRML visualizer is a relatively small Java program which must be loaded as an applet along
with a VRML view of the network. A small web page is created, and may be used to view the
visualization using a web browser such as Netscape along with the CosmoPlayer VRML plugin.

Unfortunately, not all combinations of web browser and VRML plugin work correctly with the
EAI, but the systems in Table 8.2 are known to work. These systems were current in 1999. This
year (2002) all the systems I tried at NUS appeared to work fine.

Load the default web page in the directory, and the visualization should be visible. To finish using
the visualizer, you must exit the browser entirely. If not, the Java applet keeps communicating
with the collector.

In Figure 8.6, we see an active VRML display within a browser. The computer nearby is gener-
ating a lot of traffic. In the distance we can see other nodes, and the roof and floors.

8.5.1 3DVNT VRML software

3DVNT includes software to create a default HTML web page for the VRML visualization. The
current default web page is like this:

<html><head> <title>Sample 3DVNT Page</title> </head>
<center><H1>Sample 3DVNT Page </H1></center>
<center> <embed src="root.wrl" height="600" width="700"> </center>
<center> <applet code="View1.class" width="100" height="10" mayscript>
<PARAM name="segment" value="MACS"> <PARAM name="port" value="9876">
<PARAM name="host" value="opo.usp.ac.fj"> </applet> </center>
OK?
</html>

8.5 3D VRML visualization implementation 93

Figure 8.6: 3DVNT view within Netscape browser.

94 Visualization

The root.wrl file which forms the basis of the VRML visualization is of the following format:

PROTO CLUSTER [] { ... } # Cluster definition
PROTO KEYBOARD [] { ... } # Keyboard definition
PROTO SCREEN [] { ... } # Screen definition
PROTO GLOBE [] { ... } # Traffic sphere definition
Some setting up declarations
Background { skyColor .4 .66 1 }
NavigationInfo { type ["EXAMINE", "ANY"] speed 400 }
Viewpoint { position 0 400 0 orientation 0 1 0 4 description "Camera 1" }
Lines, floors and roofs
DEF LINES Transform { ... }
DEF FLOORS Transform { ... }
DEF ROOFS Transform { ... }
and then the nodes
DEF node1 Transform { ... }
DEF node2 Transform { ... }
... and so on ...

Each node is of the following form:

DEF node1 Transform {
translation 4350 150 4365
rotation 0 1 0 4.71238
children [

KEYBOARD {}
SCREEN {}
DEF node1box Transform {

children [
Shape {

appearance Appearance { material DEF node1boxcolor Material { diffuseColor 0.8 0.8 0.8 } }
geometry Box { size 50 50 50 }

}] }
DEF node1sphere Transform {

scale 1 1 1
children [

Shape {
appearance GLOBE {}
geometry Sphere { radius 1 }

}] }] }

The Java visualyzer software maintains a link to a remote data collector, and uses the EAI to
modify the images in the VRML view.

8.5 3D VRML visualization implementation 95

// using the VRML External Interface.

import java.applet.*;
import java.awt.*;
import java.util.*;
import vrml.external.field.*;
import vrml.external.exception.*;
import vrml.external.Node;
import vrml.external.Browser;
import java.io.*;
import java.net.*;

public class View1 extends Applet {
// public static final int DEFAULT_PORT = 9877;
 Browser browser;
 Socket s = null;
 DataInputStream in = null;
 String line;

 public void init() {
 System.out.println("Test.init()...");
 }
 void SocketStart () throws java.io.IOException {
 String port = this.getParameter("port");
 int p = Integer.parseInt(port);
 try {
 String host = getCodeBase().getHost();
 System.out.println("Request came from: " + host);
 s = new Socket(host, p);
 }
 catch (UnknownHostException e) {
 System.out.println("No socket: " + e);
 }
 }
 public void start() {
 int count=0;
 Node node2sphere=null;
 Node appear=null;
 EventInSFVec3f[] scalein=new EventInSFVec3f[100] ;
 EventInSFColor[] appears=new EventInSFColor[100] ;
 float[] val = new float[3];
 int[] lastval = new int[100];
 int n;
 String id,vl;

 while (count != 100) {
 scalein[count] = null;
 appears[count] = null;
 lastval[count] = 0;
 count=count+1;
 }
 try {
 SocketStart();
 }
 catch (java.io.IOException e) {
 System.out.println("No socket: " + e);
 }

 System.out.println("Test.start()...");
 browser = (Browser) vrml.external.Browser.getBrowser(this);
 System.out.println("Got the browser: " + browser);

 count = 0;
 try {
 in = new DataInputStream(s.getInputStream());

Mar 05, 99 11:51 Page 1/3View1.java
Printed by Hugh Anderson

Thursday August 26, 1999 1/3

96 Visualization

 while(true) {
 line = in.readLine();
 if (line == null) {
 System.out.println(" Server closed connection.");
 break;
 }
 if (line.regionMatches(0," n",0,1)) {
 n = line.indexOf(32,2);
 id = line.substring(2,n);
// System.out.println(">>>"+id+"<<<");
 vl= line.substring(n+1);
// System.out.println("+++"+vl+"−−−");
 Integer a = Integer.valueOf(id);
 Integer b = Integer.valueOf(vl);
 if (scalein[a.intValue()]== null) {
 try {
 node2sphere = browser.getNode(" node"+id+" sphere");
 System.out.println(" Got the sphere node: " + node2sphere);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! node2sphere: " + e);
 }
 try {
 scalein[a.intValue()] = (EventInSFVec3f) node2sphere.ge
tEventIn(" scale");
 System.out.println(" Got the sphere scale node: " + appears[a.in
tValue()]);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! (scalein): " + e);
 }

 try {
 appear = browser.getNode(" node"+id+" boxcolor");
 System.out.println(" Got the Boxcolor node: " + appear);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! appearance: " + e);
 }
 try {
 appears[a.intValue()] = (EventInSFColor) appear.getEven
tIn(" set_diffuseColor");
 System.out.println(" Got the Boxcolor color node: " + appears[a.i
ntValue()]);
 }
 catch (InvalidNodeException e) {
 System.out.println(" PROBLEMS! appearance color: " + e);
 }
 }
 if (b.intValue()==−1) {
 val[0] = (float)1.0;
 val[1] = (float)1.0;
 val[2] = (float)1.0;
 } else {
 val[0] = (float)(b.intValue()*20)+1;
 val[1] = (float)(b.intValue()*20)+1;
 val[2] = (float)(b.intValue()*20)+1;
 }
 scalein[a.intValue()].setValue(val);

 if ((b.intValue()==0) != (lastval[a.intValue()]==0)) {
 if (b.intValue()==0) {
 val[0] = (float)0.8;
 val[1] = (float)0.8;
 val[2] = (float)0.8;
 appears[a.intValue()].setValue(val);

Mar 05, 99 11:51 Page 2/3View1.java
Printed by Hugh Anderson

2/3 Thursday August 26, 1999

8.5 3D VRML visualization implementation 97

 } else {
 if (b.intValue()==−1) {
 val[0] = (float)0.1;
 val[1] = (float)0.1;
 val[2] = (float)0.1;
 appears[a.intValue()].setValue(val);
 } else {
 val[0] = (float)0.0;
 val[1] = (float)1.0;
 val[2] = (float)0.0;
 appears[a.intValue()].setValue(val);
 }
 }
 }

 lastval[a.intValue()]=b.intValue();

 }
// System.out.println(line);
 }
 }
 catch (IOException e) { System.out.println(" Reader: " + e); }

 }

 public Browser getBrowser() {
 return browser;
 }

}

Mar 05, 99 11:51 Page 3/3View1.java
Printed by Hugh Anderson

Thursday August 26, 1999 3/3

98 Visualization

8.6 Summary of topics

In this module, we introduced the following topics:

� Visualization versus computer-graphics
� OpenGL
� (Briefly) Java3D, VTK
� VRML/Java/EAI

Sample questions for this module

1. Find a minimal VRML file which constructs a solid cube.

2. Find minimal OpenGL display-list code to draw a cube.

3. Examine the Java code given for using the EAI to modify the VRML. How exactly does
the code get a reference to a VRML node?

4. Examine the Java code given for using the EAI to modify the VRML. How exactly does
the code modify a VRML node?

Further study

� sunsite for Java3D
� The EAI specification

