Introduction to Graphics

Basic Definitions

- Raster: A rectangular array of points or dots.
- Pixel (Pel): One dot or picture element of the raster

- Raster-based display hardware common
- Imaging model (API for display) may be different

Image Models: Stroke Model

- Early displays were stroke based
- Everything defined using lines

Image Models: Pixel Model

- Close match to hardware
- 4 kinds: bitmap, grey, full clr, index clr
- *Discrete* rep. Causes aliasing

Image Models: Outline Model

- Use strokes to outline regions
 - Compact, device ind. representation

Coordinate Systems: Device Coordinates

Screen/Window coords start in upper left corner

Coordinate Systems: Physical Coordinates

- Pixels are different size on every display
 - Expressed as dots per inch (dpi)
- Fonts described using "points"
 - 72 points per inch
- Performance issues

Coordinate Systems: Model Coordinates

- Often coordinates are expressed in units independent of display
- Adds another level of scaling

MP * DrawScale * PhysToPixel + WO = OP

Coordinate Systems: Interactive Coordinates

■ Inverse: map from window to model

(IP - WO)/(DrawScale * PhysToPixel) = MP

Hardware: Frame Buffers

- 2D array
 - each (x,y) location = a pixel
- Bit Planes, Bit Depth
 - I number of bits in a pixel

Abstract Canvas Representation of FrameBuffer

- Virtual Screen
- Can hide (or not) display properties
 - Windows/X vs. Mac/NeXT/NeWS

Drawing

- Paths
 - Lines, circles, arcs, ellipses, splines, closed shapes
- Text
 - Specify font, style, size
 - I Get font information

Clipping

- Rectangular
- Rectilinear
- Rectilinear with holes

Set operations

- Operations
- Closure

Color & Graphics

- The complete display system is:
 - Model
 - I Frame Buffer
 - Screen
 - Eye
 - Brain

Color & Vision

- We'll talk about:
 - Light
 - Visions
 - Psychophysics, Colorimetry
 - Color
 - I Perceptually based models
 - I Hardware models

Light

- Vision = perception of electromagnetic energy (EM radiation)
- Very small portion of EM spectrum perceptible:

Vision: The Eye

- A dynamic, biological camera!
 - I a lens
 - a focal length
 - I an equivalent of film

■ The lens must focus directly on the retina for perfect vision

Vision: The Retina

- The eye's "film"
- Covered with cells sensitive to light
 - I turn light into electrochemical impulses
- Two types of cells
 - I rods
 - I cones

Vision: Rods

- Sensitive to most wavelengths (brightness)
- About 120 million in eye
- Most outside of fovea (center of retina)
- Used for low light vision
- Absorption function:

Vision: Cones

- Three kinds
 - R sensitive to long wavelengths
 - I G to middle
 - B to short
- About 8 million in eye
- Highly concentrated in fovea
 - B cones more evenly distributed than others
- Used for high detail color vision

Vision: Cones

■ The absorption functions of the cones are:

UI Issues

- Can't focus on R/B simultaneously
 - Refractive index of lens
- Need contrast to read
 - Luminance or color
 - | Color blindness, dist. of rods => luminance
- Color bleed

Psychophysics

- Spectral Energy Distribution
 - measure intensity of light at unit wavelength intervals of electromagnetic spectrum from ~400 nm to ~700 nm
- To mix colors
 - I mix power distributions!

Color Mixing: Additive

- Luminous objects emit s.e.d.
- Linearly add s.e.d.'s
- Primaries: red green blue
- Complements: cyan magenta yellow
- e.g. Monitors, lights

Color Mixing: Subtractive

- Reflective objects absorb (or filter) light
- Can't subtract s.e.d.'s
 - I Filters: transmission functions
 - Pigment: suspension, scattering of light
- Primaries: red yellow blue
- Complements: green violet orange
- E.g., ink, film, paint, dye

Colorimetry

■ Based on matching colors using additive color mixing

- Tristimulous Values
- Metamers
 - Different s.e.d.'s that appear the same
 - Same tristimulous values

CIE 1931

Imaginary Primaries

- Defines three new primary "colors"
 - X, Y and Z
 - Color match functions all positive valued
 - Y's fcn corresponds to luminance-efficiency function
- To define a color
 - weights x,y,z for the X,Y,Z primaries (e.g. color = xX + yY + zZ)

CIE 1931 Chromaticity

- X, Y and Z form a three dimensional color volume
 - Y is luminance, others aren't intuitive
- Factor luminance by normalizing x+y+z=1
- Gives *chromaticity* values:

 - z' = 1 x' y'

CIE 1931 Chromaticity Diagram

- Chromaticity diagram
 - Plot of x' vs. y'
- Additive color mixing
 - I linear interpolation
- Color gamuts
 - I range of possible colors for a device
 - I convex hull of primary colors

CIE 1931 Chromaticity Diagram

- inscribe line from C through color 0.8
 (A) to edge of diagram (H)
- Saturation
 - distance C-A distance C-H
- Complements
 - I inscribe line through C to the edge of the diagram (H')
- What if edge is bottom?

Hardware Models: RGB (Additive Color)

- (red, green, blue)
- Parameters vary between 0 and 1

Hard to achieve intuitive effects:

• Hue is defined by the one or two largest

- parameters
 Saturation controlled by varying the collective minumum value of R, G and B
- Luminance controlled by varying magnitudes while keeping ratios constant

Hardware Models: CMY, CMYK (Subtractive Color)

- (cyan, magenta, yellow, + blacK)
- All parameters vary between 0 and 1
 - K = min(C,M,Y)

subtract K from each

Intuitive Hardware Models: HSV

- (hue, saturation, value)
 - I value roughly luminance
 - I hue: (0...360), saturation/value: (0...1)

- Simple xform of RGB
- What do hexagonal and triangle cross sections look like?

Intuitive Hardware Models: HLS

- **■** (hue, lightness, saturation)
 - I lightness roughly luminance
 - I hue: (0...360), saturation/value: (0...1)

- saturated colors at I=0.5
- tints above, shades below
- What do hexagonal and triangle cross sections look like?

Problem: Value/Lightness NOT Luminance

■ Fully saturated colors (same v/l) have far different Y values in XYZ (Sun 17" monitor, 1991):

<u>Colour</u>	<u>RGB</u>	<u>XYZ</u>	Chromaticity
White	1 1 1	0.951 1.000 1.088	0.313 0.329
Red	100	0.589 0.290 0.000	0.670 0.330
Green	0 1 0	0.179 0.605 0.068	0.210 0.710
Blue	001	0.183 0.105 1.020	0.140 0.080
Cyan	0 1 1	0.362 0.710 1.088	0.168 0.329
Magenta	101	0.772 0.395 1.020	0.363 0.181
Yellow	110	0.768 0.895 0.068	0.444 0.517

Problem: None of these models are perceptually uniform

- Perceived distance between two colors not proportional to linear distance
- Uniform Color Spaces
 - Non-linear deformations
 - OSA Uniform Color Space (limited range)
 - **I** CIELUV
 - **■** CIELAB

Issue: Device-independent color

- Must use CIEXYZ
 - I ie. Apple Colorsync
- RGB = (0.3,0.2,0.55) tells you what computer generates, not what the monitor will display!
 - Depends on phosphors, room lighting, monitor adjustment
- Moving between devices (and media)
 - Go through XYZ
 - I Must know properties of devices