Architecture and Organization
of UL Software

E‘z‘:ﬁ‘

3 Ways to look at it

E‘z‘:ﬁ‘

[JLayers
[]Detailed tasks
[JWhat the code looks like

View #1:
Break UI tasks into layers r
~

Whole Application

Hardware -
-Hﬁ

0 Output: raster display device

OInput: keyboard & mouse

Oothers
Opointing devices (trackball, etc)
Oknobs and sliders, banks of buttons
Otouch screens, tablets (e.g. pen input)
003D locators
OVoice input, DataGlove, Eye tracking

OS, Window system, Toolkits

00OS
[ONot really concerned about it here
OWindow system
Oprovides a virtual device interface
OToolkits
OLibrary of reusable interface components
OCentral level we program in
Higher level tools
—_—_

O Automate aspects of producing Uls

O Different names
OUser Interface Management Systems (UIMS)
OUser interface builders

OUser interface design/development
environments

Whole Application o
5
O Often distinguish between
OUI parts
O"core functionality” (application)
OCarry out actions on behalf of user
O UI has two interfaces
Cone w/ user, one w/ application

OChallenge: balancing demands of each

Strong or weak separation? o
c‘l ‘;J

[OSE view: a strong separation is good

OUI view: may not be

Ouser doesn't know/care

OUI's take large % of code
Ohard to tell bits apart!

[O“Separation of concerns”

View #2: Detailed tasks o
]
[OTask oriented vs. systems oriented
OWhat does a UI need to do?
[OHow do we organize SW to do it?
O Partially depends on UI style/metaphor
0 Two dominant metaphors for UI

O conversational or language metaphor
Othe simulated world metaphor

The conversational metaphor
—_—_
OJAiIm: analogous to human conversation
OUser "talking" to computer in a “language”

OComputer responding in some “language”
Oi.e. command and menu style interfaces

O Dominant approach till early 90's

Interface as a Language

Interpreter

OLexical: accept low level inputs

[JSyntactic: parse to assign structure
[JSemantic: assign meaning, act on them

OProduce results in "output language”

O Input/output media are typically related
O"Inter-referential I/O"

An architectural model based

on the language metaphor
rlaii'ru

The Seeheim
Model

[Presentation: lexical level I/O
ODialog: syntactic level (dialog mgmt)
OInput in context: where, why, next?

O Application interface: input translation,
output abstraction

Other major metaphor:
Simulated Worlds

UI as collection of (simulated) objects
ODirect manip. of objects vs. conversation
[JAvoid conversational intermediary

[0 Conversation hasn't really gone away
Oillusion of directness
Osame kind of tasks, on a per object basis

Seeheim architectural model
revisited |

—_—_
[JSame parts, but dialog less imp.

Oper object basis vs. whole system

Osyntax localized hence simple
[0Separation of Concerns, again

[OSE: we want to separate concerns

[ODM metaphor: want to mix into each object
Oreturn to this again in toolkits (OO methods)

Underlying Commonality

OThe same central task
OUI is a mechanism that translates
manipulation of input devices into actions
carried out for the user
View #3: What does the code
look like?

O Application Level
User == UI «— Appl

[0Information flow

user — input Lappl

~— output

User Side

'-ﬁ'_‘;:‘ii'r
OInput: events
O Output: photons
Application Side o
My

OInput and Output
Oprocedure or method calls

O Input side: “callbacks”

[JRecall conversational metaphor
Oinput => commands/actions

OUI code is similar
Oinput => procedure calls (or messages)

Callbacks imply a major
restructuring of app code -
¥
O"Normal" code provides all control flow
OUI code is acting on behalf of the user
O=> main control flow in user hands
[0 Code is reactive rather than pro-active
O"event driven programming"
OUsually harder

OProgrammer has little control
Oharder to modularize/structure

So, what does this look like in

the code?

OInitialize;
[Repeat

OWait for next user action (expressed as
"event record");

[0Decide what it means;
OAct on it;
OUpdate the screen to reflect the changes

O Until done;

10

In OO, distribute interp. and
handling across objects -

=‘,§J

O Initialize;

[JRepeat
OWait for next user action (event);
O Decide which object(s) this affects;

OPass ("dispatch™) event to object(s) as
message(s);

[OJRedraw screen
O Until done;

1

