Top-Down Parsing

We assume w and w' denote sequences of terminal symbols. We assume $k : w$ denotes the first k symbols in w if number of symbols in w greater or equal k. Otherwise, $k : w$ denotes w.

For $A \rightarrow \alpha$:

$$\text{Follow}(A) = \{ w' \mid S \Rightarrow^*_{L} wA\beta \Rightarrow^*_{L} w\alpha\beta \Rightarrow^*_{L} ww' \}$$

For any α:

$$\text{First}(A) = \{ w \mid \alpha \Rightarrow^*_L w \}$$

$$\text{First}_k(A) = \{ k : w \mid w \in \text{First}(A) \}$$

G is SLL(k) iff for $A \rightarrow \alpha \mid \beta$ ($\alpha \neq \beta$)

$$\text{First}_k(\alpha\text{Follow}(A)) \cap \text{First}_k(\beta\text{Follow}(A)) = \emptyset.$$

G is LL(k) iff if $S \Rightarrow^*_L uA\gamma \Rightarrow^*_L u\alpha\gamma \Rightarrow^*_L uw$,

$S \Rightarrow^*_L uA\gamma \Rightarrow^*_L u\beta\gamma \Rightarrow^*_L uw'$ and $k : w = k : w'$ then $\alpha = \beta$.

-0
Observations:

- SLL(1) iff LL(1).
- SLL(k) implies LL(k).
- SLL(k) implies grammar is unambiguous.
- In case of a LL(k) grammar the expansion of the leftmost non-terminal symbol is always uniquely determined by
 - the consumed part of the input and
 - by the next k symbols of the remaining input.