01—Language Processing and Inductive Definitions

CS4215: Programming Language Implementation

Martin Henz

January 13, 2012
1 Brief Introduction to CS4215

2 Administrative Matters

3 Language Processing

4 Inductive Definitions

5 ePL Outlook
Brief Introduction to CS4215

- Goal: Implementation Principles, Not “Hacking”
- Method: “Learning by Programming”
- Style: Incremental and Exploratory
- Overview of Module Content

Administrative Matters

Language Processing

Inductive Definitions

ePL Outlook
Goal: Implementation Principles, Not “Hacking”

- Implementation of major programming language concepts
- As little “clutter” as possible
- Emphasis on the “what” of implementation: correctness w.r.t. given semantics
Learning By Programming

- Goal: get the insider’s view on programming languages
- You will implement a sequence of toy languages
- You will write interpreters in Java
- You will write virtual machines in Java
- You will write toy programs in the toy languages
- Extensive software support provided
Incremental2 and Exploratory2

- **Incremental**: Sequence of programming languages, from simple expression-oriented to complex object-oriented
- **Incremental**: Sequence of implementation techniques, from the simplest interpreter-based implementation to realistic memory-aware virtual machines
- **Exploratory**: Plenty of scope for exploration, from the most basic to the most advanced topics in each section
- **Exploratory**: Opportunities for exploring related topics, hands-on, within module framework
Overview of Module Content

1. Programming language processing tools and inductive definitions (2 hours)
2. ePL: An Expression language (2 hours)
3. simPL: A simple functional language (6 hours)
4. rePL: Records for Functional Programming (2 hours)
5. imPL: A Simple Imperative Language (3 hours)
6. oPL: A Simple Object-oriented Language (3 hours)
7. Memory management, garbage collection (3 hours)
8. Implementation of type systems (3 hours)
9. Combining implementation techniques (2 hours): virtual machines and interpreters, virtual machines and just-in-time compilation
Administrative Matters

- Use www.comp.nus.edu.sg/~cs4215 and IVLE
- Notes and slides (www; no textbook)
- Assignments (www; intensive work; marked; labs)
- Discussion forums (IVLE)
- Announcements (IVLE)
- Webcast (IVLE)
- No tutorials but labs; register!
1. Brief Introduction to CS4215

2. Administrative Matters

3. Language Processing
 - T-Diagrams
 - Translators
 - Interpreters
 - Combinations

4. Inductive Definitions

5. ePL Outlook
T-Diagrams

586

x86 Processor

C&C

x86

Program “C&C” (x86 code)

C&C

x86

“C&C” running on x86

x86

x86
Translators

- Translator translates from one language—the *from-language*—to another language—the *to-language*
- Compiler translates from “high-level” language to “low-level” language
- De-compiler translates from “low-level” language to “high-level” language
Basic-to-C compiler written in x86 machine code
Compilation

Compiling “C&C” from Basic to C
Two-stage Compilation

Compiling “C&C” from Basic to C to x86 machine code
Compiling a Compiler

Compiling a Basic-to-x86 compiler from C to x86 machine code
Interpreter

- Interpreter is a program that executes another program.
- The interpreter’s *source language* is the language in which the interpreter is written.
- The interpreter’s *target language* is the language in which the programs are written which the interpreter can execute.
Interpreters

Interpreter for Basic, written in x86 machine code
Interpreting a Program

Basic program “C&С” running on x86 using interpretation
"C&C" x86 executable running on a PowerPC using hardware emulation
Typical Execution of Java Programs

Compiling “C&C” from Java to JVM code, and running the JVM code on a JVM running on an x86
Excursion: Making these Slides

Compiling these slides from \LaTeX{} to DVI to PostScript to PDF on x86 (MBP)
Excursion: Viewing these Slides

Viewing the slides on a PC
Summary: Language Processing

- Components:
 programs, translators, interpreters, machines
- T-diagrams
- Combination of interpretation and compilation is common
- Interpretation and compilation are ubiquitous in computing
4 Inductive Definitions
 • What are Inductive Definitions?
 • Extremal Clause
 • Proofs by Induction
 • Defining Sets by Rules in Java
We will frequently define a set by a collection of rules that determine the elements of that set. Example: the set of machine code programs for a particular virtual machine

What does it mean to define a set by a collection of rules?
Example: Numerals

Numerals, in unary (base-1) notation

- Zero is a numeral;
- if \(n \) is a numeral, then so is \(\text{Succ}(n) \).

Examples

- Zero
- \(\text{Succ}(\text{Succ}(\text{Succ}(\text{Zero}))) \)
Example: Binary Trees

Binary trees (w/o data at nodes)
- *Empty* is a binary tree;
- if *l* and *r* are binary trees, then so is *Node*(*l*, *r*).

Examples
- *Empty*
- *Node*(Node(*Empty*, *Empty*), *Node*(*Empty*, *Empty*))
Examples (more formally)

- Numerals: The set Num is defined by the rules

 Zero

 n
 \[\text{Succ}(n) \]

- Binary trees: The set $Tree$ is defined by the rules

 Empty

 t_l t_r
 \[\text{Node}(t_l, t_r) \]
Defining a Set by Rules

- Given a collection of rules, what set does it define?
 - What is the set of numerals?
 - What is the set of trees?
- Do the rules pick out a unique set?
Defining a Set by Rules

There can be many sets that satisfy a given collection of rules.

- \(\text{Num} = \{ \text{Zero}, \text{Succ(Zero)}, \ldots \} \)
- \(\text{StrangeNum} = \text{Num} \cup \{ \infty, \text{Succ}(\infty), \ldots \} \), where \(\infty \) is an arbitrary symbol

Both \(\text{Num} \) and \(\text{StrangeNum} \) satisfy the rules defining numerals (i.e., the rules are true for these sets). Really?
Num Satisfies the Rules

Num = \{\text{Zero}, \text{Succ}(\text{Zero}), \text{Succ}(\text{Succ}(\text{Zero})), \ldots\}

Does Num satisfy the rules?

- Zero ∈ Num. √
- If \(n \in \text{Num} \), then \(\text{Succ}(n) \in \text{Num} \). √
StrangeNum Satisfies the Rules

\[
\begin{array}{c}
\text{Zero} \\
\text{Succ}(n)
\end{array}
\]

\[n\]

\[\text{StrangeNum} = \{\text{Zero}, \text{Succ}(\text{Zero}), \text{Succ}(\text{Succ}(\text{Zero})), \ldots \} \cup \{\infty, \text{Succ}(\infty), \ldots \}\]

Does StrangeNum satisfy the rules?

- Zero \(\in\) StrangeNum. ✔
- If \(n \in\) StrangeNum, then \(\text{Succ}(n) \in\) StrangeNum. ✔

StrangeNum = \{Zero, Succ(Zero), Succ(Succ(Zero)), ... \} \cup \{\infty, Succ(\infty), ... \}
Defining Sets by Rules

- Both *Num* and *StrangeNum* satisfy all rules.
- It is not enough that a set satisfies all rules.
- Something more is needed: an *extremal* clause.
 - “and nothing else”
 - “the least set that satisfies these rules”
Inductive Definitions

• An inductively defined set is the least set that satisfies a given set of rules.
• Example: *Num* is the least set that satisfies these rules:
 - *Zero* ∈ *Num*
 - if *n* ∈ *Num*, then *Succ(n) ∈ Num*.
Inductive Definitions

Question: What do we mean by “least”?
Answer: The smallest with respect to the subset ordering on sets.

- Contains no “junk”, only what is required by the rules.
- Since $\text{StrangeNum} \supseteq \text{Num}$, StrangeNum is ruled out by the extremal clause.
- Num is “ruled in” because it has no “junk”.

What’s the Big Deal?

- Inductively defined sets “come with” an induction principle.
- Suppose \(I \) is inductively defined by rules \(R \).
- To show that every \(x \in I \) has property \(P \), it is enough to show that \(P \) satisfies the rules of \(R \).
- Sometimes called *structural induction* or *rule induction*.
Example: Parity of Numerals

- The numeral \textit{Zero} has parity 0.
- Any numeral \textit{Succ}(n) has parity 1 − p if p is the parity of n.
- Let P be the following property:
 \textbf{Every numeral has either parity 0 or parity 1.}

- Does P satisfy the rules \textit{Zero} \quad \textit{Succ}(n)?
Induction Principle

- To show that every $n \in \text{Num}$ has property P, it is enough to show:
 - Zero has property P.
 - if n has property P, then $\text{Succ}(n)$ has property P.
- This is just ordinary mathematical induction!
Induction Principle

- To show that every tree has property P, it is enough to show that
 - *Empty* has property P.
 - if l and r have property P, then so does $Node(l, r)$.
- We call this *structural induction on trees*.
Example: Height of a Tree

To show: Every tree has a height, defined as follows:

- The height of Empty is 0.
- If l has height h_l and the tree r has height h_r, then the tree $\text{Node}(l, r)$ has height $1 + \max(h_l, h_r)$.

Clearly, every tree has at most one height, but does it have a height at all?
Example: height

- It may seem obvious that every tree has a height, but notice that the justification relies on structural induction!
 - An “infinite tree” does not have a height!
 - But the extremal clause rules out the infinite tree!
Example: height

- Formally, we prove that for every tree t, there exists a number h satisfying the specification of height.
- Proceed by induction on the rules defining trees, showing that the property “there exists a height h for t” satisfies these rules.
Example: height

- Rule 1: *Empty* is a tree.
 Does there exist h such that h is the height of *Empty*? Yes! Take $h=0$.

- Rule 2: *Node*(l, r) is a tree if l and r are trees.
 Suppose that there exists h_l and h_r, the heights of l and r, respectively.
 Does there exist h such that h is the height of *Node*(l, r)? Yes! Take $h = 1 + \max(h_l, h_r)$.
interface Num {}
class Zero implements Num {}
class Succ implements Num {
 public Num pred;
 Succ(Num p) {pred = p;}
}
Num my_num = new Zero();
Num my_other_num =
 new Succ(new Succ(new Zero()));
interface Tree {}

class Empty implements Tree {}

class Node implements Tree {
 public Tree left, right;

 Node(Tree l, Tree r) {
 left = l; right = r;
 }
}

Tree my_tree =
 new Node(new Empty(),
 new Node(new Node(new Empty(),
 new Empty()),
 new Empty()));
Constructors and Rules

- The constructors of the classes correspond to the rules in the inductive definition.

- Numerals
 - `new Zero()` is of type `Num`
 - if `n` is of type `Num`, then `new Succ(n)` is of type `Num`

- Trees
 - `new Empty()` is of type `Tree`
 - if `l` and `r` are of type `Tree`, then `new Node(l, r)` is of type `Tree`
Analogy with Java

- We assume an implicit extremal clause: no other classes implement the interface.
- The associated induction principle may be used to prove termination and correctness of functions.
Example: Height in Java

```java
interface Tree {
    public int height();
}

class Empty implements Tree {
    public int height() {return 0;}
}

class Node implements Tree {
    public Tree left, right;
    Node(Tree l, Tree r) {
        left = l;
        right = r;
    }
    public int height() {
        return 1 + max(height(left), height(right));
    }
}
```
Proving Termination of Java Program

Why does $\text{height}(t)$ terminate for every tree t?

- For every t of type Tree, does there exist h such that $\text{height}(t)$ returns h?
- Proof similar to above!
Summary

- An inductively defined set is the least set that satisfies a collection of rules.
- Rules have the form:
 “If $x_1 \in X$ and \ldots and $x_n \in X$, then $x \in X$.”
- Notation:
 \[
 \begin{array}{cccc}
 x_1 & \cdots & x_n \\
 \hline
 \end{array}
 \]
 \[
 x
 \]
Summary

- Inductively defined sets admit proofs by rule induction.
- For each rule
 \[
 \frac{x_1 \quad \ldots \quad x_n}{x}
 \]
 assume that \(x_1 \in P, \ldots, x_n \in P \), and show that \(x \in P \).
- Conclude that every element of the set is in \(P \).
Syntax of ePL

\[n \quad \text{true} \quad \text{false} \]

\[E \quad E_1 \quad E_2 \]

\[p_1[E] \quad p_2[E_1, E_2] \]

\[P_1 = \{\backslash\}, \]
\[P_2 = \{|, &, +, -, *, /, =, >, <\}. \]
Outlook to Week 2

- Syntax (parsing)
- Semantics (static and dynamic)
- Implementations:
 - typing
 - small step interpreter
 - big step interpreter

(compiler-based implementations in Week 3)