CS4241: Lecture 1 Intro to MM Information Retrieval

Mohan S Kankanhalli

January 1 2002

School of Computing

National University of Singapore

Topics

These are the topics that we will cover in the course:

- Introduction
- MM Retrieval-Framework
- Color-based Retrieval
- Texture-based Retrieval
- Shape-based Retrieval
- Audio Retrieval
- Video Retrieval
- Multi-attribute query and knowledge-based retrieval
- MM Info Systems Trends

MM Info Retrieval

Concerns with:

- Basic concepts and techniques in retrieving (unstructured) information
- Indexing and similarity-based retrieval of multimedia data

What is an information retrieval system?

- A system used to process, store, search, retrieve and disseminate information items
- Examples: DBMS, Free-text Systems, Hypermedia Systems etc.

Information Needs

- Volume of Information is growing at an exponential rate
 - By 1800, the amount of scientific information was doubling every 50 years
 - From 1800 to 1966, the no. of scientific journals has increased from 100 to over 10,000
- Large amount of data is available in the electronic form
 - Newspaper and picture archives, video & music catalogs, satellite images, financial data etc.
 - Latest web estimates: 1 billion pages, 20 terabytes of information: see

We are inundated with information!

Info Retrieval Needs

- Aids are needed to retrieve information:
 - friends, library card system, references, reviews etc.
- Difficult since the data is unstructured
 - it differs from the DBMS structured record:

Name: <s></s>	Sex: <s></s>	Age: <i></i>	NRIC: <s></s>	• • •
---------------	--------------	--------------	---------------	-------

- Information must be analyzed, indexed (either automatically or manually) for retrieval purposes.
- Examples:
 - text retrieval systems (LINC, Information Banks, AltaVista)
 - image systems (hospitals, police mugshot systems, TCS)
 - others: video, music information bases

Properties of MM Data

- 1: Media
- 2: Visual in nature?
- 3: Ease of data entry
- 4: Abstract concepts
- 5: Spatial Dimensions
- 6: Temporal Dimension
- 7: Does it have a well-defined interaction unit?
- 8: Does it have a well-defined semantic unit?

1	2	3	4	5	6	7	8
Text	Y	Easy	Y	1	N	Y	Y
Graphics	Y	${f Moderate}$	Ν	2-3	Y/N	Y	N
Image	Y	Difficult	Ν	2	N	N	N
Video	Y	Very Difficult	Ν	2	Y	N	N
Audio	Ν	${f Moderate}$	Y	1	Y	N	N

Info Retrieval Process

- 1. Information Seeking Need
- 2. Formulation of Requirements (in terms of a Query)
- 3. Retrieve Information that meets the Requirements
- 4. Return (ranked) List of Relevant Information
- 5. Go back to 2 if necessary

Note:

• The process can be repeated with new, improved formulation of information requirements

System Overview

Overview of a typical query-based IR system

Attributes Considered

These are some of the typical attributes considered for MM (Image, Audio & Video) data:

- No inherent structure
 - just an array of pixels with text captions
- Global features:
 - text description
 - color, texture
 - color with spatial information
 - heuristic measures for dominant shape
 - can be automatically extracted and indexed
- Local features:
 - shapes: need to perform image/frame segmentation
 - manual in nature

Query Processing

Query processing for visual data needs special attention:

- query formulation:
 - sample image
 - colors, textures, shapes etc.
- queries are ambiguous and often incomplete
- representation is also inexact
- relevance can be determined easily

Architecture

The architecture of the retrieval model has four layers:

Concept Layer (names of objects and relationships)

Object Layer (blocks of attributes)

Feature Layer (colors, textures, extracted shapes)

Data Layer (images, video, text documents)

Similarity Measures

Given two multimedia objects:

$$X = (x_1, x_2, \dots, x_n)$$
, where $x_i \in \mathbf{R}$
 $Y = (y_1, y_2, \dots, y_n)$, where $y_i \in \mathbf{R}$

We need a measure to determine the closeness between these two objects.

There are three types of similarity measures:

- Distance Measures
- Correlation Coefficients
- Association Coefficients

Distance Measures

1. Mean Character Difference:

$$\frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|$$

2. Minkowski Metric:

$$d(X,Y) = \left(\sum_{i=1}^{n} |x_i - y_i|^r\right)^{\frac{1}{r}}$$

(a) Manhattan Distance (r = 1)

$$d(X,Y) = \sum_{i=1}^{n} |x_i - y_i|$$

(b) Euclidean Distance (r = 2)

$$d(X,Y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Intutive notion of distance!

(c) Chebyshev Distance $(r = \infty)$

$$d(X,Y) = \max_{1 \le i \le n} |x_i - y_i|$$

Correlation Coefficients

• Unnormalized Correlation Coefficient:

$$C = \sum_{i=1}^{n} x_i y_i$$

Inner product of vectors!

• Cosine Measure:

$$\cos \theta = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} x_i^2}}$$

• Pearson Product Moment Measure:

$$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_i)(y_i - \overline{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}_i)^2 \sum_{i=1}^{n} (y_i - \overline{y}_i)^2}}$$

- measures moments around mean
- similar to cosine measure

Association Coefficients I

- For binary or multi-state features
- Measures the amount of agreement

Assume: 2 binary valued feature vectors:

$$X = (x_1, x_2, \dots, x_n) \quad Y = (y_1, y_2, \dots, y_n)$$

For the two objects X and Y, let

 α = number of features which are 1 for both

 β = number of features which is 1 for X and 0 for Y

 γ = number of features which is 0 for X and 1 for Y

 δ = number of features which are 0 for both

Association Coeffs II

Then we have the following measures:

[Russel & Rao]
$$d(X,Y) = \frac{\alpha}{\alpha + \beta + \gamma + \delta}$$

[Jaccard & Needham]
$$d(X,Y) = \frac{\alpha}{\alpha + \beta + \gamma}$$

[Kulzinski]
$$d(X,Y) = \frac{\alpha}{\beta + \gamma}$$

[Sokal & Mitchener]
$$d(X,Y) = \frac{\alpha + \delta}{\alpha + \beta + \gamma + \delta}$$

[Rogers & Tanimoto]
$$d(X,Y) = \frac{\alpha + \delta}{\alpha + \delta + 2(\beta + \gamma)}$$

[Yule]
$$d(X,Y) = \frac{\alpha\delta - \beta\gamma}{\alpha\delta + \beta\gamma}$$

Gower's general similarity coefficient, S_G ,

$$S_G = \frac{\sum_{i=1}^n \omega_i s_i}{\sum_{i=1}^n \omega_i}$$

where $s_i = 1$ if x_i matches y_i and $s_i = 0$ if x_i mismatches y_i . $\omega_i = 1$ if the comparison is valid and is 0 if comparison is not valid or if the state is unknown.

Complex Sim. Measures

• Multiple Features:

- like color, texture and shape for images

If each feature i has measure σ_i then the overall similarity measure is:

$$\sigma = \sum_{i=1}^{k} \lambda_i \sigma_i$$

The weights λ_i are usually chosen empirically.

• Compound Retrieval:

- mix of continuous & binary features
- -k features with similarity measure σ_i
- -j binary features

Then the overall similarity measure is:

$$\sigma = \prod_{j} \rho_{j}(X, Y) \sum_{k} \lambda_{k} \sigma_{k}(X, Y).$$

Data Considerations I

Normalization

1. Ranging:

$$x'_i = \frac{x_i - x_{\min}}{x_{\max} - x_{\min}}$$

Features now range from 0 to 1 No lopsided effect of any feature!

2. Zero Mean: Assume N objects:

$$m_i = \frac{1}{N} \sum_{N} x_i$$

Then the normalization can be done in this manner:

$$x'_i = x_i - m_i$$

3. Zero Mean and Unit Variance:

$$s_i = \frac{1}{N} \sum_{N} (x_i - m_i)^2$$

and the normalization can be applied as:

$$x'_i = \frac{x_i - m_i}{s_i}.$$

Data Considerations II

Missing Data

Suppose a feature is missing from the query object or a database object

Then how to compute the distance?

Let

$$d_i = \begin{cases} 0 & \text{if } x_i \text{ or } y_i \text{ is missing} \\ x_i - y_i & \text{otherwise} \end{cases}$$

Then the distance between X and Y is defined as:

$$d(X,Y) = \frac{n}{n - n_0} \sqrt{\sum_i d_i^2}$$

where n_0 is the number of features missing in X or Y or both.

Summary

- There is an information explosion
- Need to process, store and retrieve this data effectively (by content) and efficiently (using indexes)
- We will focus on unstructured text, image and video data
- These data have local and global attributes
- Features are extracted for these attributes which uniquely capture the attributes
- Data objects are retrieved by feature similarity
- Various types of similarity measures are employed:
 - Distance Measures
 - Correlation Coefficients
 - Association Coefficients