Department of Computer Science National University of Singapore CS4243 Computer Vision and Pattern Recognition AY2012-13 Semester 1

Assignment 1

Deadline: 24 Sep 2012

Lens Radial Distortion

You join a surveillance company as a specialist in computer vision. In surveillance applications, the images are often distorted by lens radial distortion. You look at a computer vision book and realized that the radial distortion equation is given as follows:

$$x' = x\left(1 + \kappa_1 r^2 + \kappa_2 r^4\right) \tag{1}$$

$$y' = y(1 + \kappa_1 r^2 + \kappa_2 r^4) \tag{2}$$

where (x, y) are the coordinates of the undistorted coordinates, (x', y') are the distorted coordinates, $r^2 = x^2 + y^2$, and κ_1 and κ_2 are the radial distortion parameters.

Your task is to estimate κ_1 and κ_2 . To solve the problem, you set up an experiment to measure the distorted coordinates (x_i', y_i') of a set of image points with known coordinates (x_i, y_i) , for $i = 1, \ldots, n$. After the measurement, you set up the following system of linear equations to solve for κ_1 and κ_2 :

$$\mathbf{A}\,\mathbf{k} = \mathbf{v} \tag{3}$$

where A is a matrix, v is a column vector, and k is the column vector

$$\mathbf{k} = \begin{bmatrix} \kappa_1 \\ \kappa_2 \end{bmatrix}. \tag{4}$$

- (a) Write the matrix entries in v.
- (b) Write the matrix entries in A.