Leow Wee Kheng
CS4243 Computer Vision and Pattern Recognition

Image Warping and Morphing
Morphing is artistic
Morphing is captivating!
Morphing is dynamic!
Morphing is fun!
Morphing is fun!

OK, that was not really morphing.
But, you get the point.
Two kinds of morphing

- Image morphing
 - 2D
 - our focus

- Object morphing
 - 2D: like image morphing
 - 3D: more complex
Image Warping & Morphing

- Involves 3 things
 - Spatial transformation
 - Colour transfer
 - Continuous transition
Image Warping & Morphing

- Involves 3 things
 - Spatial transformation
 - Colour change
 - Continuous transition
Spatial Transformation

- Simplest form: affine transformation

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Affine Transformation

Source \((x, y)\)

Target \((u, v)\)

\[
\begin{bmatrix}
1 & 0 & 0.8 \\
0 & 1 & -0.5 \\
0 & 0 & 1
\end{bmatrix}
\]

translation
Affine Transformation

Source \((x, y)\)

Target \((u, v)\)

\[
\begin{bmatrix}
0.8 & 0 & 0 \\
0 & 1.2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

to

calculation
Affine Transformation

Source \((x, y)\)

Target \((u, v)\)

Shearing

Parallel lines remain parallel

\[\begin{bmatrix}
1 & 0.2 & 0 \\
0.1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}\]
Affine Transformation

Source \((x, y)\)

Target \((u, v)\)

\[
\begin{bmatrix}
\cos & -\sin & 0 \\
\sin & \cos & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

rotation

parallel lines remain parallel
Affine Transformation

- To solve for affine matrix:
 - For $i = 1, \ldots, n$, arrange into two matrix equations:

$$
\begin{bmatrix}
 x_1 & y_1 & 1 \\
 \vdots & \vdots & \vdots \\
 x_n & y_n & 1
\end{bmatrix}
\begin{bmatrix}
 a_{11} \\
 a_{12} \\
 a_{13}
\end{bmatrix} =
\begin{bmatrix}
 u_1 \\
 \vdots \\
 u_n
\end{bmatrix}
$$

$$
\begin{bmatrix}
 x_1 & y_1 & 1 \\
 \vdots & \vdots & \vdots \\
 x_n & y_n & 1
\end{bmatrix}
\begin{bmatrix}
 a_{21} \\
 a_{22} \\
 a_{23}
\end{bmatrix} =
\begin{bmatrix}
 v_1 \\
 \vdots \\
 v_n
\end{bmatrix}
$$

- Then, solve each equation using linear least square.
Perspective Transformation

- Generalisation of affine transformation:

\[
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
\]

- Looks like a linear equation.
- But, perspective transformation is nonlinear.
- Will discuss further later.
Polynomial Transformation

- Described by polynomial equations

\[u = \sum \sum a_{kl} x^k y^l \]
\[v = \sum \sum b_{kl} x^k y^l \]

- Example: 2nd-order polynomial, e.g., quadratic

\[u = a_{20} x^2 + a_{02} y^2 + a_{11} xy + a_{10} x + a_{01} y + a_{00} \]
\[v = b_{20} x^2 + b_{02} y^2 + b_{11} xy + b_{10} x + b_{01} y + b_{00} \]
Quadratic Transformation

- In matrix form

\[
\begin{bmatrix}
u \\ v
\end{bmatrix} = \begin{bmatrix}
a_{20} & a_{02} & a_{11} \\ b_{20} & b_{02} & b_{11}
\end{bmatrix} \begin{bmatrix}
a_{10} & a_{01} & a_{00} \\ b_{10} & b_{01} & b_{00}
\end{bmatrix} \begin{bmatrix}
x^2 \\ y^2 \\ xy \\ x \\ y \\ 1
\end{bmatrix}
\]

If these are zero, what is the matrix?

- Solving the parameters is easy!
 - Just like for the affine case (exercise).
Quadratic Transformation

\[
\begin{bmatrix}
0 & 0 & 0.1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

Source \((x, y)\)
Target \((u, v)\)

\text{tapering / perspective distortion}
Quadratic Transformation

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -0.1 & 0 & 1 & 0
\end{bmatrix}
\]

Source \((x, y)\)
Target \((u, v)\)

tapering / perspective distortion
Quadratic Transformation

\[
\begin{bmatrix}
0.1 & 0 & 0 & 1 & 0 & 0 \\
0 & -0.1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

Source \((x, y)\)

Target \((u, v)\)

expansion / compression
Quadratic Transformation

\[
\begin{bmatrix}
0 & 0.1 & 0 & 1 & 0 & 0 \\
-0.1 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

Source \((x, y)\)	Target \((u, v)\)
![Warping Graph](image.png)
General Transformation

- General form of u and v

$$u = \sum_{k=1}^{K} a_k h_k(x, y)$$

- Possible kernel functions:
 - Affine
 - Polynomial
 - Splines: B-splines, cubic splines, etc.
 - Thin-plate spline: model physical bending energy
Which kernel to use?

- General guidelines
 - Sufficient to capture transformation
 - Not overly complex
Example

- Fit affine transformation.
- Correct transformation, small error.
Example

- Fit affine transformation.
- Incorrect transformation, large error.
Example

- Fit quadratic transformation.
- Looks correct, small error; but can over fit.
Example

- Fit quadratic transformation.
- Correct transformation, small error.
Image Warping & Morphing

- Involves 3 things
 - Spatial transformation
 - Colour transfer
 - Continuous transition
Colour Transfer

- Determine colour in transformed image.
- Remember to use **backward mapping** plus bilinear interpolation
Colour Transfer

- Forward mapping

- Copy colour of p in I to q in I'.
- But q is at real-valued coordinates; problem.
Colour Transfer

- Backward mapping

- Map q in \(I' \) to p in \(I \).
- Use bilinear interpolation to determine colour of p.
- Copy colour of p to q.
Image Warping Example

- With affine mapping
Image Warping Example

- With quadratic mapping

Why so much distortion?
Image Warping Example

- With quadratic mapping
Image Warping Example

- With quadratic mapping
Image Warping Example

- With quadratic mapping
Local Transformation

- Divide image into regions.
- Warp each region by a different transform.
 - Ensure changes over boundaries are smooth.
- Achieve finer control.
Summary

- Need to mark good corresponding points.
- Lower-order function may not warp enough.
- Higher-order function can lead to distortions.
- Local transformations give finer control.
Image Warping & Morphing

- Involves 3 things
 - Spatial transformation
 - Colour transfer
 - Continuous transition
Image Morphing

- Basic ideas:
 - Want positions to change smoothly.
 - Want colours to change smoothly.
Image Morphing

- Simplest transition: linear

\[r_i(t) = (1 - t) p_i + t q_i \quad 0 \leq t \leq 1 \]
Morphing path is actually like this:
Image Morphing

- Set time step $\Delta t = 1 / \text{number of frames}$.
- Repeat for $0 \leq t \leq 1$
 - Warp I to $I(t)$ by mapping p_i to $r_i(t)$.
 - Warp J to $J(t)$ by mapping q_i to $r_i(t)$.
 - Blend $I(t)$ and $J(t)$ into $M(t)$
 \[
 M(t) = (1 - t) I(t) + t J(t)
 \]
 - Save $M(t)$ into a video.
Example
Anything peculiar?
Summary

- For seamless morphing
 - Match all corresponding features.
 - Need accurate transformation.

- For smooth morphing
 - Use smaller time step.
Further Reading

- More sophisticated image warping: [Wolberg90].
- More sophisticated image morphing: [Lee96]
References
