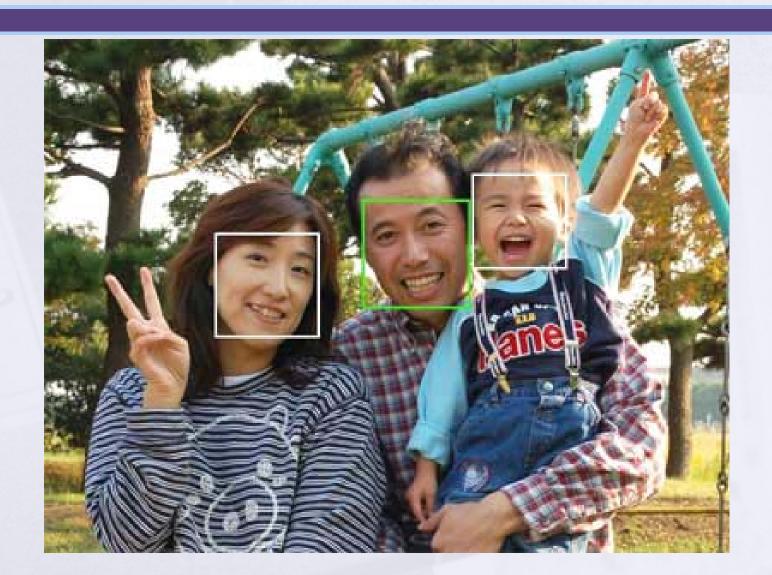
Pattern Recognition

Dr. Terence Sim

Example: face detection in cameras



Example: optical character recognition

Shoppy handwriting

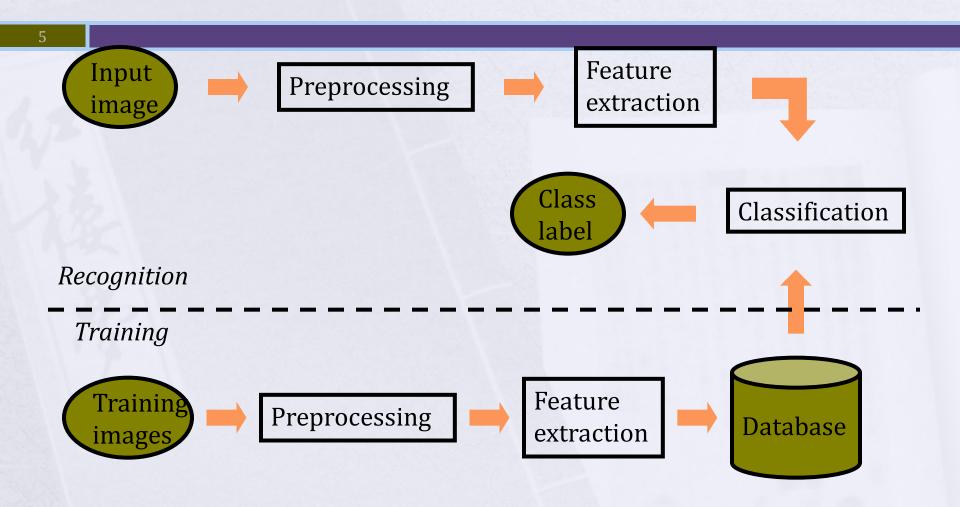
Sloppy handwriting

Basic Ideas: Definition

- Let $S = \{\omega_1, \omega_2 ... \omega_C\}$ be the set of pre-defined C classes
 - > e.g. {face, non-face}, {a,b,c,d ...}
- \rightarrow Let x be the feature vector in R^n

- > Classifier is a function $f: \mathbb{R}^n \to S$
 - We say that a classifier assigns a class label to the feature vector (pattern)

Basic Ideas: Typical Image PR pipeline

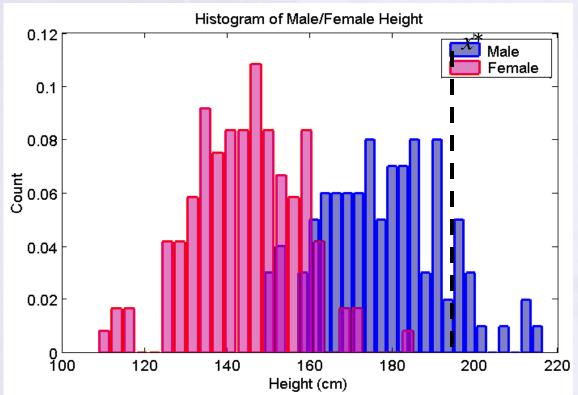


3 Important Questions

- What features are best?
 - _domain_____ knowledge
 - Ask the expert
 - Guess
 - Learn from training data
- Given features, how to design classifier?
 - What type of classifier?
 - How to find decision boundary?
- How good is the classifier?
 - How to evaluate performance?

Gender classification

- What features to use?
- Try height
 - Idea: males are generally taller than females
 - Therefore, a large value of height implies male
 - How true is this?



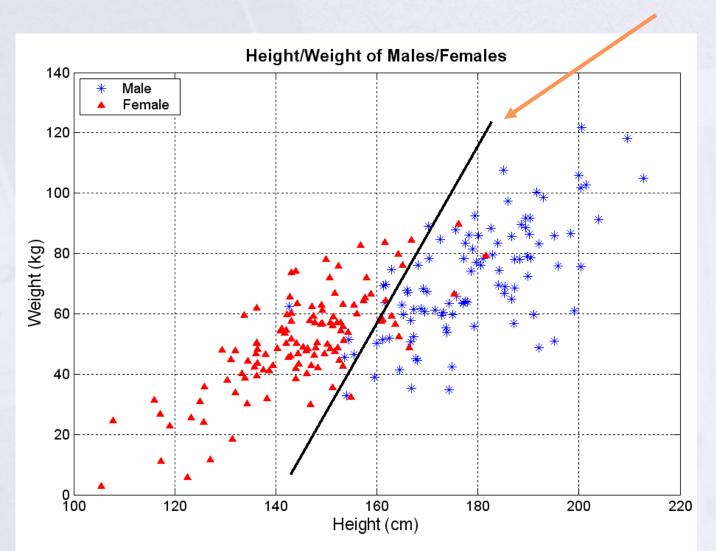
Decision boundary

- Boundary between 2 classes: x*
- > Decision rule:
 - ▶ If x < x* then decide Female
 - \triangleright Else If $x > x^*$ then decide *Male*
 - Else flip a coin

Features

> Try both: height, weight

Decision boundary



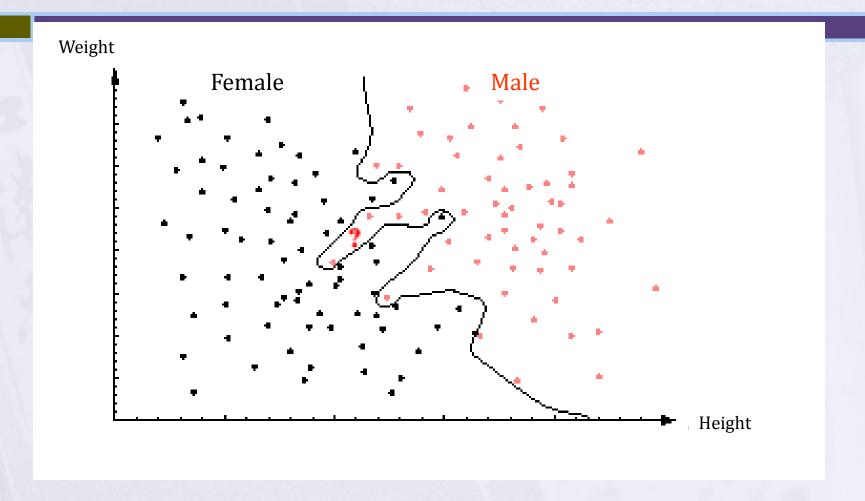
2 features

- $x = [height, weight]^T$
- Decision boundary is a line
- Decision rule:
 - > If x lies above line, then decide Male
 - Else If x lies below line, then decide Female
 - Else flip a coin
- > But still some errors ...

More features?

- We might add other features that are not correlated with the ones we already have.
 - A precaution should be taken not to reduce the performance by adding such "noisy features"
- Ideally, the best decision boundary should be the one which provides an optimal performance such as in the following figure:

Perfect Decision Boundary?

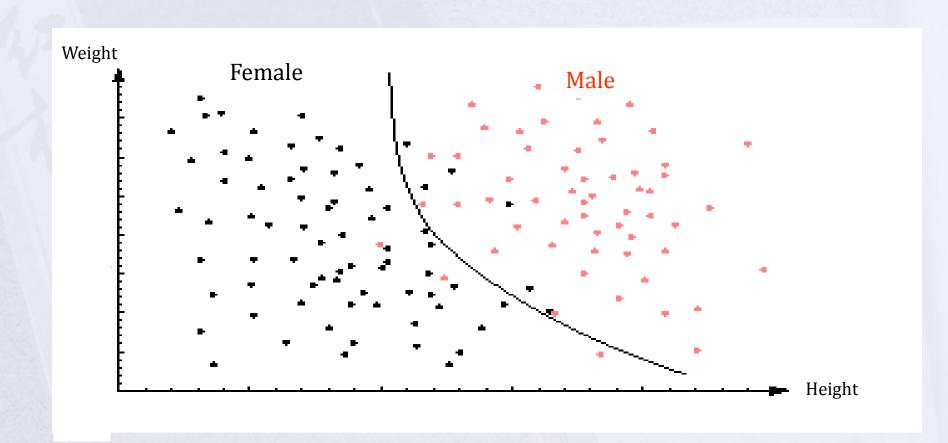


Generalization

However, our satisfaction is premature because the central aim of designing a classifier is to correctly classify novel input

Issue of generalization!

Non-linear boundary



Choices, choices, choices

Feature

- Edges
- Color
- Shape
- Texture
- Histogram of Oriented Gradients (HOG)
- Local Binary Pattern (LBP)
- Wavelets
- FFT

Classifier

- Bayes' classifier
- Support Vector Machine (SVM)
- Artificial Neural Network (ANN)
- k-nearest neighbor (kNN)
- Decision Tree
- Adaboost
- Bayesian Network

BAYES' CLASSIFIER

Theoretically Optimal Classifier

Statistical PR

- Suppose you have no observation
 - How to classify?
 - You only know the prior probabilities, e.g. males in population = 50.85%

- Decision rule with only the prior information
 - > Decide ω_1 if $P(\omega_1) > P(\omega_2)$ otherwise decide ω_2

Bayes' Classifier

- Now suppose you observed X
- How to classify?
- > Bayes' classifier says:

$$\omega^* = \underset{\omega_j}{\operatorname{arg\,max}} P(\omega_j \mid x)$$

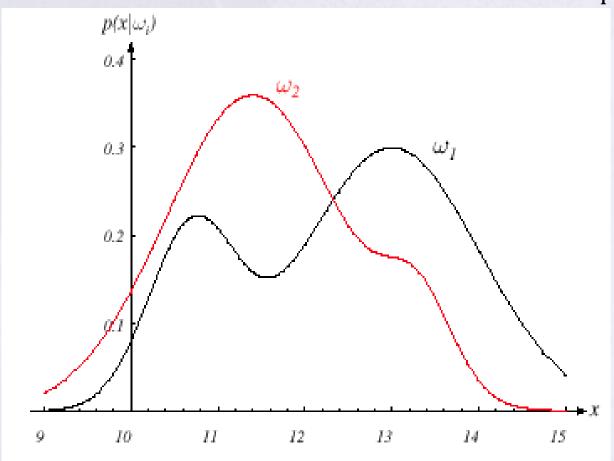
> That is, assign x to label ω_j such that $P(\omega_j \mid x)$ is largest among all $P(\omega_i \mid x)$

Bayes' Classifier

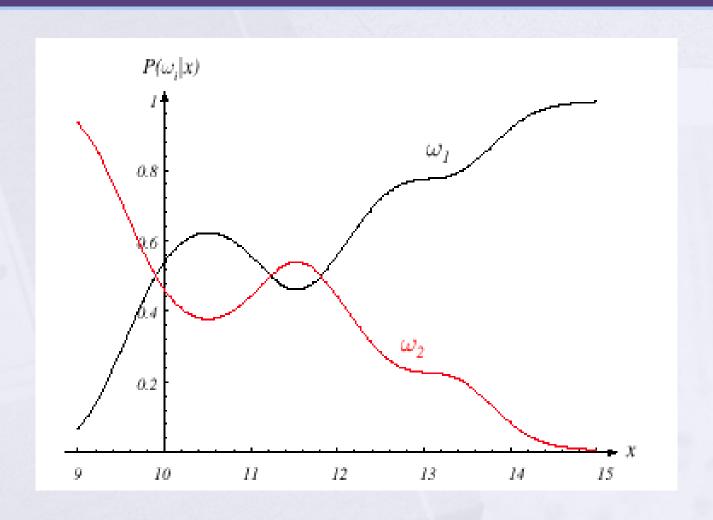
 $P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$ Bayes' Rule: **Posterior** $\omega^* = \arg\max P(\omega_i \mid x)$ $= \underset{\omega_i}{\operatorname{arg\,max}} \frac{P(x \mid \omega_j) \bullet P(\omega_j)}{P(x)}$ Likelihood **Evidence** = arg max $P(x | \omega_i) \bullet P(\omega_i)$

Likelihood: learn from training data

a.k.a. class-conditional probability



Maximum A Posteriori



Special case

> Equal priors $P(\omega_1) = P(\omega_2) = \cdots = P(\omega_C) = \frac{1}{C}$

$$\omega^* = \arg\max_{\omega_j} P(x \mid \omega_j) \bullet P(\omega_j)$$
Then

Maximum Likelihood

Special case: only 2 classes

> Decide ω_1 if $P(\omega_1 \mid x) > P(\omega_2 \mid x)$; otherwise decide ω_2

Alternatively:

- Decide ω_1 if g(x) > 0 otherwise decide ω_2
- > Where $g(x) = P(\omega_1 \mid x) P(\omega_2 \mid x)$
 - g(x) is called a Discriminant Function

Bayes' with cost

Let $\{\omega_1, \omega_2, ..., \omega_c\}$ be the set of C classes

Let λ_{ij} be the loss incurred for deciding ω_i when the class is ω_j

Likelihood Ratio

Then Bayes' rule that minimizes risk (expected loss) is:

if
$$\frac{P(x \mid \omega_1)}{P(x \mid \omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(\omega_2)}{P(\omega_1)}$$

Then decide ω_1 Otherwise decide ω_2

Note: right-hand side independent of input x

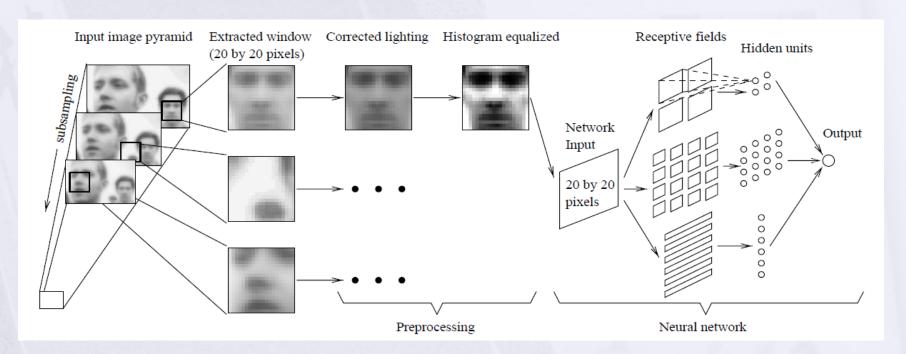
Note: if $\lambda_{21} = \lambda_{12} = 1$ and $\lambda_{11} = \lambda_{22} = 0$, then MAP!

Case Study

VIOLA-JONES FACE DETECTION

Prior face detector

 Using ANN, by Sung Kah Kay (MIT), and also by Henry Rowley (CMU)

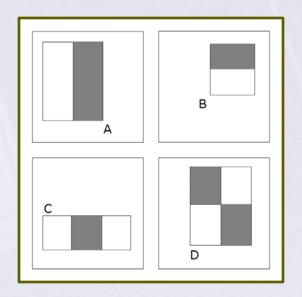


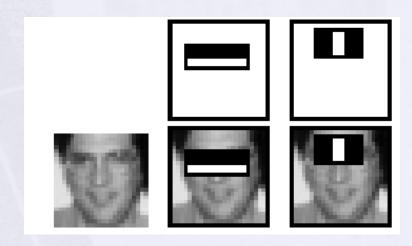
Viola Jones Technique Overview

- Three major contributions/phases of the algorithm :
 - Feature extraction
 - Classification using boosting
 - Multi-scale detection algorithm
- Feature extraction and feature evaluation.
 - Rectangular features are used, with a new image representation their calculation is very fast.
- Classifier training and feature selection using a slight variation of a method called AdaBoost.
- A combination of simple classifiers is very effective
- Paper: Robust Real-Time Object Detection, IJCV 2001.

Features

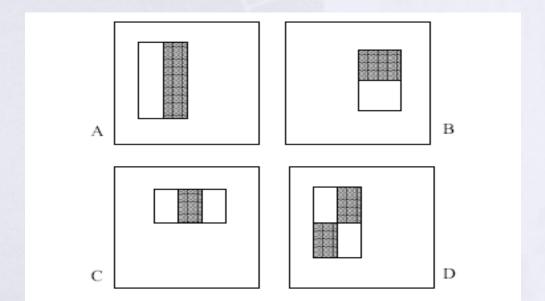
- Four basic types.
 - They are easy to calculate.
 - The white areas are subtracted from the black ones.
 - A special representation of the sample called the integral image makes feature extraction faster.





Feature Extraction

- Features are extracted from sub windows of a sample image.
 - > The base size for a sub window is 24 by 24 pixels.
 - Each of the four feature types are scaled and shifted across all possible combinations
 - In a 24 pixel by 24 pixel sub window there are ~160,000 possible features to be calculated.



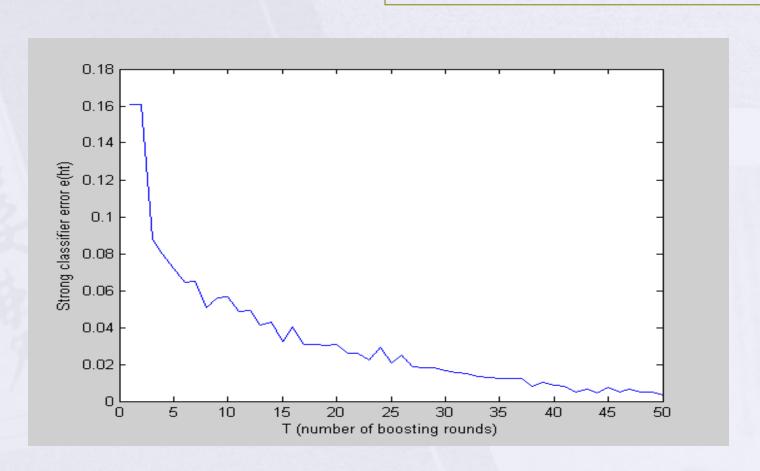
Boosting with Single Feature Perceptrons

- Viola-Jones version of Boosting:
 - * "simple" (weak) classifier = single-feature perceptron
 * see last slide
 - With K features (e.g., K = 160,000) we have 160,000 different single-feature perceptrons
 - At each stage of boosting
 - > given reweighted data from previous stage
 - > Train all K (160,000) single-feature perceptrons
 - > Select the single best classifier at this stage
 - Combine it with the other previously selected classifiers
 - Reweight the data
 - Learn all K classifiers again, select the best, combine, reweight
 - Repeat until you have T classifiers selected
 - Hugely computationally intensive
 - Learning K perceptrons T times
 - \rightarrow E.g., K = 160,000 and T = 1000

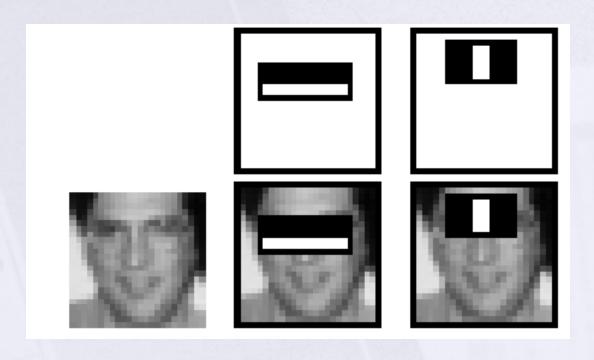
How is classifier combining done?

- At each stage we select the best classifier on the current iteration and combine it with the set of classifiers learned so far
- How are the classifiers combined?
 - Take the weight*feature for each classifier, sum these up, and compare to a threshold (very simple)
 - Boosting algorithm automatically provides the appropriate weight for each classifier and the threshold
 - This version of boosting is known as the AdaBoost algorithm
 - Some nice mathematical theory shows that it is in fact a very powerful machine learning technique

Reduction in Error as Boosting adds Classifiers



Useful Features Learned by Boosting Slides from Prof. Padhraic Smyth, UC Irvine



Detection in Real Images

- Basic classifier operates on 24 x 24 subwindows
- Scaling:
 - Scale the detector (rather than the images)
 - > Features can easily be evaluated at any scale
 - Scale by factors of 1.25
- Location:
 - Move detector around the image (e.g., 1 pixel increments)
- Final Detections
 - A real face may result in multiple nearby detections
 - Postprocess detected subwindows to combine overlapping detections into a single detection

Training

Slides from Prof. Padhraic Smyth, UC Irvine

In paper, 24x24 images of faces and non faces (positive and negative examples).

Sample results using the Viola-Jones Detector

Slides from Prof. Padhraic Smyth, UC Irvine

Notice detection at multiple scales

Slides from Prof. Padhraic Smyth, UC Irvine

More Detection Examples

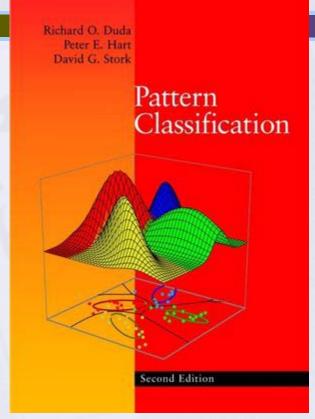
Practical implementation

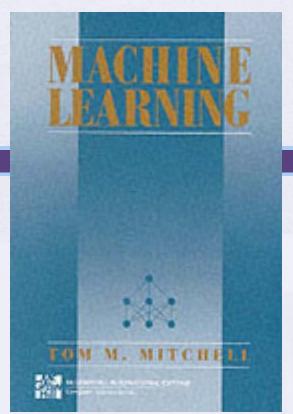
- Details discussed in Viola-Jones paper
- Training time = weeks (with 5k faces and 9.5k non-faces)
- Final detector has 38 layers in the cascade, 6060 features
- > 700 Mhz processor:
 - Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)

Summary

- Pattern Recognition or Classification means assigning class label to input pattern.
- Choosing features is an art!
- Given the right features, many classifiers work equally well.
 - Some classifiers require long learning time
- Evaluating a classifier on a test set is an important part of determining its performance.

Books





- Machine Learning, Tom Mitchell, McGraw Hill, 1997
- http://www.cs.cmu.edu/~tom/mlbook.html
- Pattern Classification, 2nd Ed., R. Duda, P. Hart, D. Stork, 2000
- http://rii.ricoh.com/~stork/DHS.html