Detection and Matching of Keypoints in Road Scene Images

Shafeeq.Zhanpeng.James.Toan
Background & Objectives

- **Background:**
 1. Road scene images are taken in different views
 2. Road scene images contain moving objects
 3. Road scene images contain repeating objects

- **Objectives:**
 1. Keypoints are detected automatically from road scene.
 2. Automatic keypoints matching applied to any pair of images with different viewpoints but of the same scene.
 3. As robust as possible
Method

trials

1- global context SIFT + Hungarian
2- SIFT + Hungarian
3- global context SIFT + Flann
4- SIFT + Flann
5- SURF + Hungarian
6- SURF + Flann

current

Detection & Matching Key points: Affine-SIFT
Elimination of bad matches: Moisan-Stival Procedure + RANSAC
Affine-SIFT

- In addition to SIFT, Affine-SIFT handles large transition tilt
- Affine-SIFT is proven to be fully affine-invariant
Affine-SIFT

- SIFT is invariant only for 4 parameters: zoom, rotation and translation (x and y).
- Affine-SIFT can also handle angles defining camera axis orientation.

Footnotes:
- ϕ: *longitude* angle between optical axis and a fixed vertical plane.
- $\theta = \arccos(1/t)$: *latitude* angle between optical axis and the normal to the image plane. Tilt $t > 1 \iff \theta \in [0^\circ, 90^\circ]$.
- ψ: rotation angle of camera around optical axis.
- λ: zoom parameter.
- $T = (c, f)^T$: translation, not presented here.
Affine-SIFT

Φ is the longitude angle between optical axis and a fixed vertical plane
Affine-SIFT

Θ is the latitude angle between optical axis and the normal to the image plane.
Affine-SIFT algorithm

1. Apply rotation to both images
2. Apply simulated tilts to all rotated images
3. Perform SIFT of all pairs of resulting images
Affine-SIFT vs SIFT and SURF

- Affine-SIFT produces more good key points
- Affine-SIFT produces more matches
Affine-SIFT vs SIFT

SIFT

Number of keypoints
- Image 1: 747
- Image 2: 704
Number of matches: 200
Number of correct matches after filtering bad matches: 171

Affine SIFT

Number of keypoints
- Image 1: 4010
- Image 2: 3909
Number of matches: 687
Number of correct matches after filtering bad matches: 687
Affine-SIFT vs SIFT
Affine-SIFT vs SURF

SURF

Number of keypoints:
- Image 1: 727
- Image 2: 716

Number of matches: 27

Number of correct matches: 7

Affine SIFT:

Keypoints
- Image 1: 2480
- Image 2: 2692

Number of matches: 23

Number of good matches: 20
Affine-SIFT vs SIFT

- **SIFT**

 Number of keypoints:

 Image 1: 377
 Image 2: 315

 Number of matches: 24
 Number of correct matches: 16

- **Affine SIFT**:

 Keypoints

 Image 1: 2428
 Image 2: 1662

 Number of matches: 26
 Number of good matches: 24
Moisan-Stival Procedure

- Eliminate matches that are incoherent with epipolar geometry
- Moissan-Stival procedure can detect rigidity and provide a good estimate of the fundamental matrix when the initial set of point matches contains up to 90% of outliers. RANSAC typically breaks down around 50% of outliers.
Moisan-Stival Procedure vs RANSAC

- Relies on rigidity constraint - change of point view to apply a 3D rotation & translation to scene
- Check points whether correlated by rigid motion
- Define rigidity as the least epipolar distance for all geometric from 7 sub-pairs
- Define meaningfulness as the expected number of similar sets in random (ask the question whether this set of points is epipolar by chance or not)
- Requires no assumption on camera motion
Moisan-Stival + RANSAC

Moisan-Stival

Moisan-Stival + RANSAC

remove 2 more bad matches
Future work

- Key point matches with multi view points
- Fully illumination invariant (possible)
- Global context with ASIFT to introduce more good matches when the image has many repetitive features
References

http://www.insa.ac.in/insa_pdf/20005b8c_49.pdf
thanks