Detection and Matching of Keypoints in Road Scene Images

Shafeeq.Zhanpeng.James.Toan

Background & Objectives

Background:

Road scene images are taken in different views
 Road scene images contain moving objects
 Road scene images contain repeating objects

Objectives:

 Keypoints are detected automatically from road scene.
 Automatic keypoints matching applied to any pair of images with different viewpoints but of the same scene.
 As robust as possible

Method

Trials

global context SIFT + Hungarian
 SIFT + Hungarian
 global context SIFT + Flann
 SIFT + Flann
 SURF + Hungarian
 SURF + Flann

Ourrent

Detection & Matching Key points: Affine-SIFT

Elimination of bad matches: Moisan-Stival Procedure + RANSAC

In addition to SIFT, Affine-SIFT handles large transition tilt

Affine-SIFT is proven to be fully affineinvariant

SIFT is invariant only for 4 parameters: zoom, rotation and translation(x and y)

Affine-SIFT can also handle angles defining camera axis orientation

- φ: longitude angle between optical axis and a fixed vertical plane.
- θ = arccos(1/t): latitude angle between optical axis and the normal to the image plane.
 Tilt t > 1 ↔ θ ∈ [0°, 90°].
- ψ : rotation angle of camera around optical axis.
- λ : zoom parameter.
- $T = (e, f)^T$: translation, not presented here.

 Φ is the longitude angle between optical axis and a fixed vertical plane

 Θ is the latitude angle between optical axis and the normal to the image plane

Affine-SIFT algorithm

1. Apply rotation to both images
2. Apply simulated tilts to all rotated images
3. Perform SIFT of all pairs of resulting images

Affine-SIFT vs SIFT and SURF

Affine-SIFT produces more good key points
Affine-SIFT produces more matches

Affine-SIFT vs SIFT

SIFT

Number of keypoints Image 1: 747 Image 2: 704 Number of matches: 200 Number of correct matches after filtering bad matches: 171

Affine SIFT

Number of keypoints Image 1: 4010 Image 2: 3909 Number of matches: 687 Number of correct matches after filtering bad matches: 687

Affine-SIFT vs SIFT

Affine-SIFT vs SURF

SURF

Number of keypoints: Image 1: 727 Image 2: 716 Number of matches: 27 Number of correct matches: 7

Affine SIFT:

Keypoints Image 1: 2480 Image 2: 2692 Number of matches: 23 Number of good matches: 20

Affine-SIFT vs SIFT

SIFT

Number of keypoints: Image 1: 377 Image 2: 315 Number of matches: 24 Number of correct matches: 16

Affine SIFT:

Keypoints Image 1: 2428 Image 2: 1662 Number of matches: 26 Number of good matches: 24

Moisan-Stival Procedure

Eliminate matches that are incoherent with epipolar geometry

Moissan-Stival procedure can detect rigidity and provide a good estimate of the fundamental matrix when the initial set of point matches contains up to 90% of outliers. RANSAC typically breaks down around 50% of outliers.

Moisan-Stival Procedure vs RANSAC

- Relies on rigidity constraint change of point view to apply a 3D rotation & translation to scene
- Check points whether correlated by rigid motion
- Define rigidity as the least epipolar distance for all geometric from 7 sub-pairs
- Define meaningfulness as the expected number of similar sets in random (ask the question whether this set of points is epipolar by chance or not)
- Requires no assumption on camera motion

Moisan-Stival + RANSAC

Moisan-Stival

🛛 Moisan-Stival + RANSAC 🔤

remove 2 more bad matches

Future work

Key point matches with multi view points
Fully illumination invariant (possible)
Global context with ASIFT to introduce more good matches when the image has many repetitive features

References

- http://www.insa.ac.in/insa_pdf/20005b8c_49.pdf
- http://www.ams.jhu.edu/~castello/362/Handouts/ hungarian.pdf
- http://people.cs.ubc.ca/~mariusm/uploads/FLANN/ flann_visapp09.pdf
- http://www.cmap.polytechnique.fr/~yu/publications/ SIAM_ASIFT.pdf
- <u>http://www.math-info.univ-paris5.fr/~moisan/papers/</u> <u>CMLA2002-11.pdf</u>

othanks